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OSE scientific computing

The purpose of (scientific) computing is insight, not numbers.

—Richard Hamming.

The sound analysis of computational economic models requires expertise in economics, statistics, numerical methods,
and software engineering. We first provide an overview of basic numerical methods for optimization, numerical inte-
gration, approximation methods, and uncertainty quantification. We then deepen our understanding of each of these
topics in the context of a dynamic model of human capital accumulation using respy. We conclude by showcasing
basic software engineering practices such as the design of a collaborative and reproducible development workflow,
automated testing, and high-performance computing.

Students learn how to use Python for advanced scientific computing. They acquire a toolkit of numerical methods
frequently needed for the analysis of computational economic models, obtain an overview of basic software engineering
tools such as GitHub and pytest, and are exposed to high-performance computing using multiprocessing and mpi4py.

Guest lectures organized by institutions from the public and private sector are an integral part of our curriculum. These
events connect students directly with employment opportunities that match their interests and skill set and provide
students with insights into scientific computing applications in a variety of settings.

We build the course on the Nuvolos.cloud as an integrated research and teaching platform. The platform provides
a simple, browser-based environment that allows for complete control over students’ computational environment and
simplifies the dissemination of teaching material. It enables students to seamlessly scale up their course projects from
a prototype to a high-performance computing environment.
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CHAPTER

ONE

LABS

Throughout the course we will make heavy use of Python and its SciPy ecosystem. We provide a set of learning labs
as Jupyter Notebooks.

1.1 Tooling

We showcase the basics of Python programming and point students to useful resources to study further. There are
numerous excellent introductory lectures on Python programming in economics available online. Among them is
Python programming for economics and finance and we will sample some of their material for our labs.

1.2 Linear equations

We explore different solution algorithms to solve linear equations. We look at direct methods building on L-U decom-
position as well as iterative methods. We study the impact of ill-conditioned matrices on the performance of algorithms.
In the process, we learn some basic ideas behind testing and benchmarking numerical routines.

1.2.1 Linear Equations

Outline

1. Setup

2. Special cases

3. L-U Factorization

4. Pivoting

5. Benchmarking

6. Ill conditioning

7. Iterative methods

8. Resources
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Setup

The linear equation is the most elementary problem that arises in computational economic analysis. In a linear equation,
an 𝑛× 𝑛 matrix 𝐴 and an n-vector 𝑏 are given, and one must compute the 𝑛-vector 𝑥 that satisfies 𝐴𝑥 = 𝑏.

Linear equations arise naturally in many economic applications such as

• Linear multicommodity market equilibrium models

• Finite-state financial market models

• Markov chain models

• Ordinary least squares

They more commonly arise indirectly from numerical solution to nonlinear and functional equations:

• Nonlinear multicommodity market models

• Multiperson static game models

• Dynamic optimization models

• Rational expectations models

Applications often require the repeated solution of very large linear equation systems. In these situations, issues re-
garding speed, storage requirements, and preciseness of the solution of such equations can arise.

[1]: import pandas as pd
import numpy as np

from linear_algorithms import backward_substitution
from linear_algorithms import forward_substitution
from linear_algorithms import gauss_seidel
from linear_algorithms import solve

from linear_plots import plot_operation_count

from temfpy.linear_equations import get_ill_cond_lin_eq
from linear_problems import get_inverse_demand_problem

Special cases

We can start with some special cases to develop a basic understanding for the core building blocks for more complicated
settings. Let’s start with the case of a lower triangular matrix 𝐴, where we can solve the linear equation by a simple
backward or forward substitution. Let’s consider the following setup.

𝐴 =

⎡⎣𝑎11 0 0
𝑎21 𝑎22 0
𝑎31 𝑎32 𝑎33

⎤⎦
Consider an algorithmic implementation of forward-substitution as an example.

𝑥𝑖 =

⎛⎝𝑏𝑖 −
𝑖−1∑︁
𝑗=1

𝑎𝑖𝑗𝑥𝑗

⎞⎠ /𝑎𝑖𝑖
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[2]: ??forward_substitution

[3]: def test_problem():
A = np.tril(np.random.normal(size=(3, 3)))
x = np.random.normal(size=3)
b = np.matmul(A, x)
return A, b, x

for _ in range(10):
A, b, x_true = test_problem()
x_solve = forward_substitution(A, b)
np.testing.assert_almost_equal(x_solve, x_true)

Questions

• How can we make the test code more generic and sample test problems of different dimensions?

• Is there a way to control the randomness in the test function?

• Is there software out there that allows to automate parts of the testing?

If we have an upper triangular matrix, we can use backward substitution to solve the linear system

[4]: ??backward_substitution

Exercise

• Implement the same testing setup as above the backward-substitution function.

We can now build on these two functions to tackle more complex tasks. This is a good example on how to develop sci-
entific software step-by-step ensuring that each component is well tested before integrating into more involved settings.

L-U Factorization

Most linear equations encountered in practice, however, do not have a triangular 𝐴 matrix. Doolittle and Crout have
shown that any matrix 𝐴 can be decomposed into the product of a (row-permuted) lower and upper triangular matrix
𝐿 and 𝑈 , respectively 𝐴 = 𝐿 × 𝑈 using Gaussian elimination. We will not look into the Gaussian elimination
algorithm, but there is an example application in our textbook where you can follow along step by step. The L-U
algorithm is designed to decompose the 𝐴 matrix into the product of lower and upper triangular matrices, allowing the
linear equation to be solved using a combination of backward and forward substitution.

Here are the two core steps:

• Factorization phase

𝐴 = 𝐿𝑈

• Solution phase:

𝐴𝑥 = (𝐿𝑈)𝑥 = 𝐿(𝑈𝑥) = 𝑏,

where we solve 𝐿𝑦 = 𝑏 using forward-substitution and 𝑈𝑥 = 𝑦 using backward-substitution.

1.2. Linear equations 5
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Adding to this the two building blocks we developed earlier forward_substitution and backward_substitution,
we can now write a quite generic function to solve systems of linear equations.

[5]: ??solve

Let’s see if this is actually working.

[6]: A = np.array([[3, 1], [1, 2]])
x_true = np.array([9, 8])
b = A @ x_true
x_solve = solve(A, b)
np.testing.assert_almost_equal(x_true, x_solve)

Pivoting

Rounding error can cause serious error when solving linear equations. Let’s consider the following example, where 𝜖
is a tiny number. [︂

𝜖 1
1 1

]︂
×
[︂

𝑥1

𝑥2

]︂
=

[︂
1
2

]︂
It is easy to verify that the right solution is

𝑥1 =
1

1− 𝜖

𝑥2 =
1− 2𝜖

1− 𝜖

and thus 𝑥1 is slightly more than one and 𝑥2 is slightly less than one. To solve the system using Gaussian elimination
we need to add −1/𝜖 times the first row to the second row. We end up with[︂

𝜖 1
0 1− 1

𝜖

]︂
×
[︂

𝑥1

𝑥2

]︂
=

[︂
1

2− 1
𝜖

]︂
,

which we can then solve recursively.

𝑥2 =
2− 1/𝜖

1− 1/𝜖

𝑥1 =
1− 𝑥2

𝜖

Let’s translate this into code.

[7]: eps = 1e-17
A = np.array([[eps, 1], [1, 1]])
b = np.array([1, 2])

We can now use our solution algorithm.

[8]: solve(A, b)

[8]: array([0., 1.])

But we have to realize that the results are grossly inaccurate. What happened? Is there any hope to apply numpy’s
routine?

6 Chapter 1. Labs
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[9]: np.linalg.solve(A, b)

[9]: array([1., 1.])

This algorithm does automatically check whether such rounding errors can be avoided by simply changing the order of
rows. This is called pivoting and changes the recursive solution to

𝑥2 =
1− 2𝜖

1− 𝜖

𝑥1 = 2− 𝑥2

which can be solved more accurately. Our implementation also solves the modified problem well.

[10]: A = np.array([[1, 1], [eps, 1]])
b = np.array([2, 1])
solve(A, b)

[10]: array([1., 1.])

Building your own numerical routines is usually the only way to really understand the algorithms and learn about all
the potential pitfalls. However, the default should be to rely on battle-tested production code. For linear algebra there
are numerous well established libraries available. Building your own numerical routines is usually the only way to
really understand the algorithms and learn about all the potential pitfalls. However, the default should be to rely on
battle-tested production code. For linear algebra there are numerous well established libraries available.

Benchmarking

How does solving a system of linear equations by an 𝐿−𝑈 decomposition compare to other alternatives of solving the
system of linear equations.

[11]: plot_operation_count()

The right setup for your numerical needs depends on your particular problem. For example, this trade-off looks very
different if you have to solve numerous linear equations that only differ in 𝑏 but not 𝐴. In this case you only need to
compute the inverse once.

1.2. Linear equations 7
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Exercise

• Set up a benchmarking exercise that compares the time to solution for the two approaches for 𝑚 = {1, 100} and
𝑛 = {50, 100}, where 𝑛 denotes the number of linear equations and 𝑚 the number of repeated solutions.

Ill Conditioning

Some linear equations are inherently difficult to solve accurately on a computer. This difficulty occurs when the A
matrix is structured in such a way that a small perturbation 𝛿𝑏 in the data vector 𝑏 induces a large change 𝛿𝑥 in the
solution vector 𝑥. In such cases the linear equation or, more generally, the 𝐴 matrix is said to be ill conditioned.

One measure of ill conditioning in a linear equation Ax = b is the “elasticity” of the solution vector 𝑥 with respect to
the data vector 𝑏

𝜖 = sup
||𝛿𝑏||>0

||𝛿𝑥||/||𝑥||
||𝛿𝑏||/||𝑏||

The elasticity gives the maximum percentage change in the size of the solution vector 𝑥 induced by a 1 percent change
in the size of the data vector 𝑏. If the elasticity is large, then small errors in the computer representation of the data
vector 𝑏 can produce large errors in the computed solution vector x. Equivalently, the computed solution 𝑥 will have
far fewer significant digits than the data vector 𝑏.

In practice, the elasticity is estimated using the condition number of the matrix 𝐴, which for invertible 𝐴 is defined by
𝜅 ≡ ||𝐴|| · ||𝐴−1||. The condition number is always greater than or equal to one. Numerical analysts often use the
rough rule of thumb that for each power of 10 in the condition number, one significant digit is lost in the computed
solution vector 𝑥. Thus, if 𝐴 has a condition number of 1, 000, the computed solution vector 𝑥 will have about three
fewer significant digits than the data vector 𝑏.

Let’s look at an example, where the solution vector is all ones but but the linear equation is notoriously ill-conditioned.

[12]: ??get_ill_cond_lin_eq

How does the solution error depend on the condition number in this setting.

[13]: rslt = dict((("Condition", []), ("Error", []), ("Dimension", [])))
grid = [5, 10, 15, 25]

for n in grid:
A, b, x_true = get_ill_cond_lin_eq(n)
x_solve = np.linalg.solve(A, b)
rslt["Condition"].append(np.linalg.cond(A))
rslt["Error"].append(np.linalg.norm(x_solve - x_true, 1))
rslt["Dimension"].append(n)

[14]: pd.DataFrame.from_dict(rslt)

[14]: Condition Error Dimension
0 2.616969e+04 1.278000e+03 5
1 2.106258e+12 1.762345e+09 10
2 2.582411e+21 4.947153e+16 15
3 2.035776e+22 2.383979e+20 25

There is a more general lesson here. Always be skeptical about the quality of your numerical results. See these two
papers for an exploratory analysis of econometric software packages and nonliner optimization. Yes, they are rather
old and much progress has been made, but the general points remain valid.

8 Chapter 1. Labs
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• McCullough, B. D., and Vinod, H. D. (2003). Verifying the Solution from a Nonlinear Solver: A Case Study.
American Economic Review, 93 (3): 873-892.

• McCullough, B., D., and Vinod H. D. (1999). The Numerical Reliability of Econometric Software. Journal of
Economic Literature, 37 (2): 633-665.

Exercise

Let’s consider the following example as well, which is taken from Johansson (2015, p.131).[︂
1
2

]︂
=

[︂
1
√
𝑝

1 1√
𝑝

]︂
×
[︂

𝑥1

𝑥2

]︂
This system is singular for 𝑝 = 1 and for 𝑝 in the vicinity of one is ill-conditioned.

• Create two plots that show the condition number and the error between the analytic and numerical solution.

Iterative methods

Algorithms based on Gaussian elimination are called exact or, more properly, direct methods because they would
generate exact solutions for the linear equation 𝐴𝑥 = 𝑏 after a finite number of operations, if not for rounding error.
Such methods are ideal for moderately sized linear equations but may be impractical for large ones. Other methods,
called iterative methods, can often be used to solve large linear equations more efficiently if the 𝐴 matrix is sparse,
that is, if 𝐴 is composed mostly of zero entries. Iterative methods are designed to generate a sequence of increasingly
accurate approximations to the solution of a linear equation, but they generally do not yield an exact solution after a
prescribed number of steps, even in theory.

The most widely used iterative methods for solving a linear equation 𝐴𝑥 = 𝑏 are developed by choosing an easily
invertible matrix 𝑄 and writing the linear equation in the equivalent form

𝑄𝑥 = 𝑏 + (𝑄−𝐴)𝑥

or

𝑥 = 𝑄−1𝑏 + (𝐼 −𝑄−1𝐴)𝑥

This form of the linear equation suggests the iteration rule

𝑥𝑘+1 ← 𝑄−1𝑏 + (𝐼 −𝑄−1𝐴)𝑥𝑘

which, if convergent, must converge to a solution of the linear equation. Ideally, the so-called splitting matrix 𝑄 will
satisfy two criteria. First, 𝑄−1𝑏 and 𝑄−1𝐴 should be relatively easy to compute. This criterion is met if 𝑄 is either
diagonal or triangular. There are two popular approaches:

• The Gauss-Seidel method sets 𝑄 equal to the upper triangular matrix formed from the upper triangular elements
of 𝐴.

• The Gauss-Jacobi method sets 𝑄 equal to the diagonal matrix formed from the diagonal entries of 𝐴.

[15]: ??gauss_seidel

1.2. Linear equations 9
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Exercise

• Implement the Gauss-Jacobi method.

[16]: from linear_solutions_tests import gauss_jacobi # noqa: E402

Let’s conclude with an economic application as outlined in Judd (1998). Suppose we have the following inverse demand
function 𝑝 = 10 − 𝑞 and the following supply curve 𝑞 = 𝑝/2 + 1. Equilibrium is where supply equals demand and
thus we need to solve the following linear system.[︂

10
−2

]︂
=

[︂
1 1
1 −2

]︂
×

[︂
𝑝
𝑞

]︂

[17]: A, b, x_true = get_inverse_demand_problem()

Now we can compre the two solution approaches and make sure that they in fact give the same result.

[18]: x_seidel = gauss_seidel(A, b)
x_jacobi = gauss_jacobi(A, b)
np.testing.assert_almost_equal(x_seidel, x_jacobi)

Resources

• The PARDISO Solver Project: https://www.pardiso-project.org

• LAPACK—Linear Algebra PACKage: http://www.netlib.org/lapack

• Robert Johansson. Numerical Python: scientific computing and data science applications with NumPy, SciPy
and Matplotlib. Apress, 2018.

• William H Press, Brian P Flannery, Saul A Teukolsky, and William T Vetterling. Numerical recipes: The art of
scientific computing. Cambridge University Press, 1986.

[ ]:

1.2.2 Functions

This module contains the algorithms for the linear equations lab.

The materials follow Miranda and Fackler (2004, [MF04]) (Chapter 2). The python code heavily draws on Romero-
Aguilar (2020, [RA20]) and Foster (2019, [Fos19]).

labs.linear_equations.linear_algorithms.backward_substitution(a, b)
Perform backward substitution to solve a system of linear equations.

Solves a linear equation of type 𝐴𝑥 = 𝑏 when for an upper triangular matrix 𝐴 of dimension 𝑛× 𝑛 and vector
𝑏 of length 𝑛.

Parameters

• a (numpy.ndarray) – Lower triangular matrix of dimension 𝑛× 𝑛.

• b (numpy.ndarray) – Vector of length 𝑛.

Returns x – Solution of the linear equations. Vector of length 𝑛.

10 Chapter 1. Labs
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Return type numpy.ndarray

labs.linear_equations.linear_algorithms.forward_substitution(a, b)
Perform forward substitution to solve a system of linear equations.

Solves a linear equation of type 𝐴𝑥 = 𝑏 when for a lower triangular matrix 𝐴 of dimension 𝑛× 𝑛 and vector 𝑏
of length 𝑛. The forward subsititution algorithm can be represented as:

𝑥𝑖 =

⎛⎝𝑏𝑖 −
𝑖−1∑︁
𝑗=1

𝑎𝑖𝑗𝑥𝑗

⎞⎠ /𝑎𝑖𝑖

Parameters

• a (numpy.ndarray) – Lower triangular matrix of dimension 𝑛× 𝑛.

• b (numpy.ndarray) – Vector of length 𝑛.

Returns x – Solution of the linear equations. Vector of length 𝑛.

Return type numpy.ndarray

labs.linear_equations.linear_algorithms.gauss_seidel(a, b, x0=None, lambda_=1.0,
max_iterations=1000,
tolerance=1.4901161193847656e-08)

Solves linear equation of type 𝐴𝑥 = 𝑏 using Gauss-Seidel iterations.

In the linear equation, 𝐴 denotes a matrix of dimension 𝑛 × 𝑛 and 𝑏 denotes a vector of length 𝑛 The solution
method performs especially well for larger linear equations if matrix :math`A`is sparse. The method achieves
fairly precise approximations to the solution but generally does not produce exact solutions.

Following the notation in Miranda and Fackler (2004, [MF04]), the linear equations problem can be written as

𝑄𝑥 = 𝑏 + (𝑄−𝐴)𝑥⇒ 𝑥 = 𝑄−1𝑏 + (𝐼 −𝑄−1𝐴)𝑥

which suggest the iteration rule

𝑥(𝑘+1) ← 𝑄−1𝑏 + (𝐼 −𝑄−1𝐴)𝑥(𝑘)

which, if convergent, must converge to a solution of the linear equation. For the Gauss-Seidel method, 𝑄 is the
upper triangular matrix formed from the upper triangular elements of 𝐴.

Parameters

• a (numpy.ndarray) – Matrix of dimension 𝑛× 𝑛

• b (numpy.ndarray) – Vector of length 𝑛.

• x0 (numpy.ndarray, default None) – Array of starting values. Set to be if None.

• lambda (float) – Over-relaxation parameter which may accelerate convergence of the al-
gorithm for 1 < 𝜆 < 2.

• max_iterations (int) – Maximum number of iterations.

• tolerance (float) – Convergence tolerance.

Returns x – Solution of the linear equations. Vector of length 𝑛.

Return type numpy.ndarray

Raises StopIteration – If maximum number of iterations specified by max_iterations is reached.

1.2. Linear equations 11
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labs.linear_equations.linear_algorithms.naive_lu(a)
Apply a naive LU factorization.

LU factorization decomposes a matrix 𝐴 into a lower triangular matrix 𝐿 and upper triangular matrix U. The
naive LU factorization does not apply permutations to the resulting matrices and thus only works reliably for
diagonal matrices 𝐴:

Parameters a (numpy.ndarray) – Diagonal square matrix.

Returns

• l (numpy.ndarray)

• u (numpy.ndarray)

labs.linear_equations.linear_algorithms.solve(a, b)
Solve linear equations using L-U factorization.

Solves a linear equation of type 𝐴𝑥 = 𝑏 when for a nonsingular square matrix 𝐴 of dimension 𝑛× 𝑛 and vector
𝑏 of length 𝑛. Decomposes Algorithm decomposes matrix 𝐴 into the product of lower and upper triangular
matrices. The linear equations can then be solved using a combination of forward and backward substitution.

Two stages of the L-U algorithm:

1. Factorization using Gaussian elimination: 𝐴 = 𝐿𝑈 where 𝐿 denotes a row-permuted lower triangular matrix.
𝑈 denotes a row-permuted upper triangular matrix.

2. Solution using forward and backward substitution. The factored linear equation of step 1 can be expressed as

𝐴𝑥 = (𝐿𝑈)𝑥 = 𝐿(𝑈𝑥) = 𝑏

The forward substitution algorithm solves𝐿𝑦 = 𝑏 for y. The backward substitution algorithm then solves𝑈𝑥 = 𝑦
for 𝑥.

Parameters

• a (numpy.ndarray) – Matrix of dimension 𝑛× 𝑛

• b (numpy.ndarray) – Vector of length 𝑛.

Returns x – Solution of the linear equations. Vector of length 𝑛.

Return type numpy.ndarray

Example

>>> b = np.array([1, 2, 3])
>>> a = np.array([[4, 0, 0], [0, 2, 0], [0, 0, 2]])
>>> solve(a, b)
array([0.25, 1. , 1.5 ])

12 Chapter 1. Labs
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1.3 Nonlinear equations

We explore different solution algorithms to solve nonlinear equations. We start with the bisection method. We then
turn to function iteration before exploring Newton’s method for nonlinear equations. Finally, we look at Quasi-Newton
methods and benchmark their performance in solving a standard Cournot problem. We briefly discuss some criterion
to choose the right algorithm for the problem at hand.

1.3.1 Nonlinear Equations

Outline

1. Setup

2. Bisection method

3. Function iteration

4. Newton’s method

5. Quasi-Newton method

6. Choosing a solution method

7. Convergence

8. Resources

Setup

The nonlinear equation takes one of two forms.

• Rootfinding problem Given a function 𝑓 : 𝑅𝑛 ↦→ 𝑅𝑛,compute an 𝑛-vector 𝑥*, called root of 𝑓 , such that
𝑓(𝑥*) = 0.

• Fixed-point problem Given a function 𝑔 : 𝑅𝑛 ↦→ 𝑅𝑛, compute an 𝑛-vector 𝑥* called fixed point of 𝑔 such that
𝑔(𝑥*) = 𝑥*

The two forms are equivalent.

• A root of 𝑓 is a fixed-point of 𝑔(𝑥) = 𝑥− 𝑓(𝑥).

• A fixed-point of 𝑔 is a root ot 𝑓(𝑥) = 𝑥− 𝑔(𝑥).

Nonlinear equations arise naturally in economics:

• Multicommodity market equilibrium models

• Multiperson static game models

• Unconstrained optimization models

Nonlinear equations also arise indirectly when numerically solving economic models involving functional equations:

• Dynamic optimization models

• Rational expectations models

• Arbitrage pricing models

Building on our earlier lab on the solution to linear systems of equations, often the solution to a nonlinear problem is
computed iteratively by solving a sequence of linear problems.

• sensitivity to intial condition

1.3. Nonlinear equations 13
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• susceptible to rounding error

[2]: # from temfpy.nonlinear_equations import exponential # noqa: F401
from scipy import optimize
import pandas as pd
import numpy as np

from nonlinear_algorithms import bisect
from nonlinear_plots import plot_bisection_test_function

from nonlinear_algorithms import fixpoint
from nonlinear_plots import plot_fixpoint_example
from nonlinear_plots import plot_newton_pathological_example
from nonlinear_plots import plot_convergence
from nonlinear_plots import plot_newtons_method
from nonlinear_plots import plot_secant_method

from nonlinear_algorithms import newton_method

from nonlinear_problems import bisection_test_function
from nonlinear_problems import function_iteration_test_function
from nonlinear_problems import newton_pathological_example

Bisection method

We start with the implementation (and testing) of the bisection algorithm.

• The bisection method is perhaps the simplest and most robust method for computing the root of a continuous real-
valued function defined on a bounded interval of the real line. The bisection method is based on the Intermediate
Value Theorem, which asserts that if a continuous real-valued function defined on an interval assumes two distinct
values, then it must assume all values in between. In particular, if 𝑓 is continuous, and 𝑓(𝑎) and 𝑓(𝑏) have
different signs, then 𝑓 must have at least one root 𝑥 in [𝑎, 𝑏].

• Each iteration begins with an interval known to contain or to bracket a root of 𝑓 , because the function has different
signs at the interval endpoints. The interval is bisected into two subintervals of equal length. One of the two
subintervals must have endpoints of different signs and thus must contain a root of 𝑓 . This subinterval is taken as
the new interval with which to begin the subsequent iteration. In this manner, a sequence of intervals is generated,
each half the width of the preceding one, and each known to contain a root of 𝑓 . The process continues until the
width of the bracketing interval containing a root shrinks below an acceptable convergence tolerance.

[3]: ??bisect

Signature: bisect(f, a, b, tolerance=1.5e-08)
Source:
def bisect(f, a, b, tolerance=1.5e-8):

"""Apply bisect method to root finding problem.

Iterative procedure to find the root of a continuous real-values function :math:
→˓`f(x)` defined

on a bounded interval of the real line. Define interval :math:`[a, b]` that is known␣
→˓to contain

or bracket the root of :math:`f` (i.e. the signs of :math:`f(a)` and :math:`f(b)`␣
→˓must differ).

The given interval :math:`[a, b]` is then repeatedly bisected into subintervals of␣
→˓equal length. (continues on next page)
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(continued from previous page)

Each iteration, one of the two subintervals has endpoints of different signs (thus␣
→˓containing

the root of :math:`f`) and is again bisected until the size of the subinterval␣
→˓containing the

root reaches a specified convergence tolerance.

Parameters
----------
f : callable

Continuous, real-valued, univariate function :math:`f(x)`.
a : int or float

Lower bound :math:`a` for :math:`x \\in [a,b]`.
b : int or float

Upper bound :math:`a` for :math:`x \\in [a,b]`. Select :math:`a` and :math:`b` so
that :math:`f(b)` has different sign than :math:`f(a)`.

tolerance : float
Convergence tolerance.

Returns
-------
x : float

Solution to the root finding problem within specified tolerance.

Examples
--------
>>> x = bisect(f=lambda x : x ** 3 - 2, a=1, b=2)[0]
>>> round(x, 4)
1.2599

"""
# Get sign for f(a).
s = np.sign(f(a))

# Get staring values for x and interval length.
x = (a + b) / 2
d = (b - a) / 2

# Continue operation as long as d is above the convergence tolerance threshold.
# Update x by adding or subtracting value of d depending on sign of f.
xvals = [x]

while d > tolerance:
d = d / 2
if s == np.sign(f(x)):

x += d
else:

x -= d

xvals.append(x)

return x, np.array(xvals)
File: ~/external-storage/sciebo/office/OpenSourceEconomics/teaching/scientific-
→˓computing/course/lectures/nonlinear_equations/nonlinear_algorithms.py (continues on next page)
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(continued from previous page)

Type: function

Let’s visualize a test function to get a sense of what result can should expect.

[4]: ??bisection_test_function

Signature: bisection_test_function(x)
Source:
def bisection_test_function(x):

"""Get test function for bisection."""
return x ** 3 - 2

File: ~/external-storage/sciebo/office/OpenSourceEconomics/teaching/scientific-
→˓computing/course/lectures/nonlinear_equations/nonlinear_problems.py
Type: function

[5]: ??plot_bisection_test_function

Signature: plot_bisection_test_function(f)
Source:
def plot_bisection_test_function(f):

"""Plot bisect example."""
fig, ax = plt.subplots()
grid = np.linspace(1, 2)

values = []
for value in grid:

values.append(f(value))
ax.plot(grid, values)

ax.axes.axhline(0, color="grey")
ax.set_ylabel("f(x)")
ax.set_xlabel("x")

File: ~/external-storage/sciebo/office/OpenSourceEconomics/teaching/scientific-
→˓computing/course/lectures/nonlinear_equations/nonlinear_plots.py
Type: function

• The ability to vectorize functions using np.vectorize comes in very handy when evaluating functions over a grid.
However, be aware that this is a simple replacement of a for loop and thus does not improve performance.

We are ready to go . . .

[6]: plot_bisection_test_function(bisection_test_function)
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Now we are ready to check our implementation and investigate the sensitivity of results to alternative tuning parameter.

[26]: lower, upper = 1, 2
x, xvals = bisect(bisection_test_function, lower, upper)
print(f"The root of our test function is {x:3.2f}.")

The root of our test function is 1.26.

Exercises

1. Write a short test that ensures that in fact found a root of the function.

2. Create a simple plot that shows each iterate of 𝑥 and label the two axis appropriately.

Function iteration

• Function iteration is a relatively simple technique that may be used to compute a fixed point 𝑥 = 𝑔(𝑥) of a
function from 𝑅𝑛 to 𝑅𝑛. The technique is also applicable to a rootfinding problem 𝑓(𝑥) = 0 by recasting it
as the equivalent fixed-point problem 𝑔(𝑥) = 𝑥 − 𝑓(𝑥). Function iteration begins with the analyst supplying a
guess 𝑥(0) for the fixed point of 𝑔. Subsequent iterates are generated using the simple iteration rule

𝑥(𝑘+1) ← 𝑔(𝑥(𝑘))

Since 𝑔 is continuous, if the iterates converge, they converge to a fixed point of 𝑔.

[8]: ??fixpoint

Signature: fixpoint(f, x0, tolerance=0.0001)
Source:
def fixpoint(f, x0, tolerance=10e-5):

"""Compute fixed point using function iteration.

Parameters
----------
f : callable

(continues on next page)
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(continued from previous page)

Function :math:`f(x)`.
x0 : float

Initial guess for fixed point (starting value for function iteration).
tolerance : float

Convergence tolerance (tolerance < 1).

Returns
-------
x : float

Solution of function iteration.

Examples
--------
>>> import numpy as np
>>> x = fixpoint(f=lambda x : x**0.5, x0=0.4, tolerance=1e-10)[0]
>>> np.allclose(x, 1)
True

"""
e = 1
xvals = [x0]

while e > tolerance:
# Fixed point equation.
x = f(x0)
# Error at the current step.
e = np.linalg.norm(x0 - x)
x0 = x
xvals.append(x0)

return x, np.array(xvals)
File: ~/external-storage/sciebo/office/OpenSourceEconomics/teaching/scientific-
→˓computing/course/lectures/nonlinear_equations/nonlinear_algorithms.py
Type: function

Let’s visualize a test function to get a sense of what result can should expect.

[9]: ??function_iteration_test_function

Signature: function_iteration_test_function(x)
Source:
def function_iteration_test_function(x):

"""Get test function for function iteration."""
return np.sqrt(x)

File: ~/external-storage/sciebo/office/OpenSourceEconomics/teaching/scientific-
→˓computing/course/lectures/nonlinear_equations/nonlinear_problems.py
Type: function

[10]: plot_fixpoint_example(function_iteration_test_function)
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Let’s run and test our implementation.

[28]: x = fixpoint(function_iteration_test_function, 0.4, tolerance=1e-5)[0]

try:
np.testing.assert_almost_equal(function_iteration_test_function(x), x)

except AssertionError as msg:
print(msg)

Arrays are not almost equal to 7 decimals
ACTUAL: 0.9999965046343594
DESIRED: 0.9999930092809364

• This is an example of using a try-except block to explicitly handle the AssertionError. Details on exception
handling in Python, see this Wiki for some more examples.

We set two parameters manually, which one is it? How about choosing different starting values?

[33]: for x0 in np.linspace(0.1, 0.9):
x = fixpoint(function_iteration_test_function, x0, tolerance=1e-5)[0]
try:

np.testing.assert_almost_equal(function_iteration_test_function(x), x)
print("Success for x0 {x0}")

except AssertionError:
pass

Let’s look at the tolerance setting instead.

1.3. Nonlinear equations 19
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Exercises

1. Find the fixpoint of 𝑔(𝑥) =
√
𝑥 + 0.2.

2. How many iterations does the function iteration need? Does it depend on the starting value?

Newton’s method

Newton’s method is an algorithm for computing the root of a function 𝑓 : 𝑅𝑛 ↦→ 𝑅𝑛. Newton’s method employs a
strategy of successive linearization. The strategy calls for the nonlinear function 𝑓 to be approximated by a sequence
of linear functions whose roots are easily computed and, ideally, converge to the root of 𝑓 . In particular, the 𝑘 + 1𝑡ℎ

iterate

𝑥𝑘+1 = 𝑥𝑘 − 𝑓 ′(𝑥𝑘)−1𝑓(𝑥𝑘)

is the root of the Taylor linear approximation of 𝑓 around the preceding iterate 𝑥𝑘.

𝑓(𝑥) ≈ 𝑓(𝑥𝑘) + 𝑓 ′(𝑥𝑘)(𝑥− 𝑥𝑘).

This yields the following iteration rule:

𝑥𝑘+1 = 𝑥𝑘 − 𝑓 ′(𝑥𝑘)−1𝑓(𝑥𝑘)

If 𝑛 = 1, the iteration rule takes the simpler form

𝑥𝑘+1 = 𝑥𝑘 −
𝑓(𝑥𝑘)

𝑓 ′(𝑥𝑘)
.

[13]: plot_newtons_method()
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Exercises

1. Plot the function 𝑓(𝑥) = 𝑥4 − 2 and provide a rough estimate of its fix point.

2. Let’s compute the root of the function using Newton’s method by employing the proper iteration rule:

𝑥𝑘+1 = 𝑥𝑘 −
𝑓(𝑥𝑘)

𝑓 ′(𝑐𝑘)
= 𝑥𝑘 −

𝑥4
𝑘 − 2

4𝑥3
𝑘

We now look at a more general implementation.

[14]: ??newton_method

Signature: newton_method(f, x0, tolerance=1.5e-08)
Source:
def newton_method(f, x0, tolerance=1.5e-8):

"""Apply Newton's method to solving nonlinear equation.

Solve equation using successive linearization, which replaces the nonlinear problem
by a sequence of linear problems whose solutions converge to the solution of the␣

→˓nonlinear
problem.

Parameters
----------
f : callable

(Univariate) function :math:`f(x)`.
x0 : float

Initial guess for the root of :math:`f`.
tolerance : float

Convergence tolerance.

Returns
-------
xn : float

Solution of function iteration.

"""
x0 = np.atleast_1d(x0)

# This is tailored to the univariate case.
assert x0.shape[0] == 1

xn = x0.copy()

while True:
fxn, gxn = f(xn)
if np.linalg.norm(fxn) < tolerance:

return xn
else:

xn = xn - fxn / gxn
File: ~/external-storage/sciebo/office/OpenSourceEconomics/teaching/scientific-
→˓computing/course/lectures/nonlinear_equations/nonlinear_algorithms.py
Type: function
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Question

• What are the important generalizations?

Let’ explore one last test function to test the interface of our function and learn something about private functions in
the process.

𝑓(𝑥) = 𝑥3 − 2

[36]: def _jacobian(x):
return 3 * x ** 2

def _value(x):
return x ** 3 - 2

def f(x):
return _value(x), _jacobian(x)

x = newton_method(f, 0.4)
np.testing.assert_almost_equal(f(x)[0], 0)

A potential shortcoming of Newton’s method is that the derivatives required for the Jacobian may not be available may
be difficult to calculate analytically, or time-consuming to approximate numerically . . . or that it might actually fail or
result in cycles.

Consider the following pathological example which has a unique root at 0.

𝑓(𝑥) = 𝑥
1
3 𝑒−𝑥2

[37]: ??newton_pathological_example

Signature: newton_pathological_example(x)
Source:
def newton_pathological_example(x):

"""Get Newton Pathological example."""
fval = newton_pathological_example_fval(x)
fjac = newton_pathological_example_fjac(x, newton_pathological_example_fval)
return fval, fjac

File: ~/external-storage/sciebo/office/OpenSourceEconomics/teaching/scientific-
→˓computing/course/lectures/nonlinear_equations/nonlinear_problems.py
Type: function

[17]: plot_newton_pathological_example(newton_pathological_example)
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We can derive the Newton iterates as:

𝑥𝑘+1 = 𝑥𝑘

(︂
1− 3

1− 6𝑥2
𝑘

)︂

Questions

1. What happens when you apply Newton’s method to solve this function for different starting values?

2. What does the Newton iterate look like for very small and very large values?

• For 𝑥𝑘 small, the iteration reduces to 𝑥𝑘+1 = −2𝑥𝑘 and so it converges to 0 only if 𝑥0 = 0.

• For 𝑥𝑘 large, the iteration becomes

𝑥𝑘+1 = 𝑥𝑘

(︂
1 +

3

𝑥2
𝑘

)︂
which diverges, but will eventually satisfy the stopping rule.

Another problems might be cycles.
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Quasi-Newton method

Quasi-Newton methods replace the Jacobian in Newton’s method with an estimate that is easier to compute. Specifi-
cally, quasi-Newton methods use an iteration rule

𝑥𝑘+1 = 𝑥𝑘 −𝐴−1
𝑘 𝑓(𝑥𝑘)

where 𝐴𝑘 is an estimate of the Jacobian 𝑓 ′(𝑥𝑘).

The secant method replaces the derivative in Newton’s method with the estimate

𝑓 ′(𝑥𝑘) ≈ 𝑓(𝑥𝑘)− 𝑓(𝑥𝑘−1)

𝑥𝑘 − 𝑥𝑘−1

The secant method is so called because it approximates the function 𝑓 using secant lines drawn through successive
pairs of points on its graph.
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[18]: plot_secant_method()

Let’s start with a crude implementation to make sure we understood the setup correctly. We will use this to show the
lambda functions, see here for details.

[19]: f = lambda z: z ** 4 - 2 # noqa: E731
x, xlag = 2.3, 2.4

for it in range(50):
d = (f(x) - f(xlag)) / (x - xlag)
x, xlag = x - f(x) / d, x
if abs(x - xlag) < 1.0e-10:

break

print(f"Root of our example function {x:5.3f}")

Root of our example function 1.189

Broyden’s method is the most popular multivariate generalization of the univariate secant method. Broyden’s method
replaces the Jacobian in Newton’s method with an estimate 𝐴𝑘 that is updated by making the smallest possible change
(measured by the Frobenius norm) that is consistent with the secant condition:

𝑓(𝑥𝑘+1)− 𝑓(𝑥𝑘) = 𝐴𝑘+1(𝑥𝑘+1 − 𝑥𝑘).

This yields the iteration rule

𝐴𝑘+1 = 𝐴𝑘 + (𝑓(𝑥𝑘+1)− 𝑓(𝑥𝑘)−𝐴𝑘𝑑𝑘)
𝑑′𝑘

𝑑′𝑘𝑑𝑘

where 𝑑𝑘 = 𝑥𝑘+1 − 𝑥𝑘. Often 𝐴0 is equal to the numerical approximation of 𝑓 at 𝑥0. The remarkable feature of
Broyden’s method is that it is able to generate a reasonable approximation to the Jacobian matrix with no additional
evaluations of the function. This approach is readily available in scipy.
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[20]: rslt = optimize.root(f, 1.0, method="broyden1")
print(f"Root of our example function {rslt['x']:5.3f}")

Root of our example function 1.189

Consider a market with two firms producing the same good. Firm 𝑖’s total cost of production is a function of the
quantity 𝑞𝑖 it produces.

𝐶𝑖(𝑞𝑖) =
𝛽𝑖

2
𝑞2𝑖

The market clearing price is a function of the total quantity produced by both firms.

𝑃 (𝑞1 + 𝑞2) = (𝑞1 − 𝑞2)−𝛼

Firm 𝑖 chooses production 𝑞𝑖 so as to maximize its profit taking the other firm’s output as given.

𝜋𝑖(𝑞1, 𝑞2) = 𝑃 (𝑞1 + 𝑞2)𝑞𝑖 − 𝐶𝑖(𝑞𝑖).

Thus in equilibrium,

𝜕𝜋𝑖

𝜕𝑞𝑖
= (𝑞1 − 𝑞2)−𝛼 − 𝛼(𝑞1 + 𝑞2)−(𝛼+1)𝑞𝑖 − 𝛽𝑖𝑞𝑖 = 0 for 𝑖 = 1, 2.

Exercise

• Compute the market equilibrium quantities using Broyden’s method for 𝛼 = 0.6 and 𝛽 = [0.6, 0.8].
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Choosing a solution method

We now consider a more challenging task and compare the performance of scipy’s root finding algorithms. We will
use one of temfpy’s test functions for this.

[21]: ??exponential

Object `exponential` not found.

Now let’s see which of the algorithms performs best for a ten dimensional problem.

[22]: METHODS = ["broyden1", "broyden2", "anderson", "Krylov"]
DIMENSION = 10
PROBLEMS = 5

We are ready to run our benchmarking exercise.

1.3. Nonlinear equations 27

https://temfpy.readthedocs.io/en/latest/index.html


OSE scientific computing

[23]: def exponential_function(x):

x = np.atleast_1d(x)

p = x.shape[0]
rslt = np.tile(np.nan, p)

for i in range(p):
xi = np.clip(x[i], None, 300)
if i == 0:

rslt[i] = np.exp(xi) - 1
else:

rslt[i] = (i / 10) * (np.exp(xi) + x[i - 1] - 1)

return rslt

np.testing.assert_almost_equal(exponential_function([0, 0]), [0.0] * 2)

columns = ["Algorithm", "Sample", "Success", "Iteration"]
df = pd.DataFrame(columns=columns)

for method in METHODS:

# Ensure that all have same test problems.
np.random.seed(123)

for _ in range(PROBLEMS):

x0 = np.random.uniform(size=DIMENSION)

rslt = optimize.root(exponential_function, x0, method=method)

info = [[method, _, rslt["success"], rslt["nit"]]]
df = df.append(pd.DataFrame(info, columns=columns), ignore_index=True)

/home/peisenha/.local/lib/python3.8/site-packages/scipy/optimize/nonlin.py:1016:␣
→˓RuntimeWarning: invalid value encountered in true_divide
d = v / vdot(df, v)

/home/peisenha/.local/lib/python3.8/site-packages/scipy/optimize/nonlin.py:1016:␣
→˓RuntimeWarning: divide by zero encountered in true_divide
d = v / vdot(df, v)

/home/peisenha/.local/lib/python3.8/site-packages/scipy/optimize/nonlin.py:771:␣
→˓RuntimeWarning: invalid value encountered in multiply
self.collapsed += c[:,None] * d[None,:].conj()

Now we can explore the performance of the alternative implementations.

[24]: df.head()

[24]: Algorithm Sample Success Iteration
0 broyden1 0 False 1100
1 broyden1 1 False 1100
2 broyden1 2 False 1100

(continues on next page)
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(continued from previous page)

3 broyden1 3 False 1100
4 broyden1 4 False 1100

Convergence

Two factors determine the speed with which a properly coded and initiated algorithm will converge to a solution:

• Asymptotic rate of convergence

• Computational effort per iteration

The asymptotic rate of convergence measures improvement afforded per iteration near the solution. A sequence 𝑥𝑘

converges to 𝑥* at an asymptotic rate of order 𝑝 if there is constant 𝐶 > 0 such that for 𝑘 sufficiently large,

|||𝑥𝑘+1 − 𝑥*|| ≤ 𝐶||𝑥𝑘 − 𝑥*||𝑝.

• Function iteration converges at a “linear” rate with 𝑝 = 1 and 𝐶 < 1.

• Broyden’s method converges at a “superlinear” rate with 𝑝 ≈ 1.62.

• Newton’s method converges at a “quadratic” rate with 𝑝 = 2.

[25]: plot_convergence()

However, algorithms differ in computations per iteration.

• Function iteration requires a function evaluation.

• Broyden’s method additionally requires a linear solve.

• Newton’s method additionally requires a Jacobian evaluation.
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Thus, a faster rate of convergence typically can be achieved only by investing greater computational effort per iteration.
The optimal tradeoff between rate of convergence and computational effort per iteration varies across applications.

Resources

• HOMPACK: https://www.netlib.org/hompack

1.3.2 Functions

This module contains the algorithms for the nonlinear equations lab.

The materials follow Miranda and Fackler (2004, [MF04]) (Chapter 3). The python code draws on Romero-Aguilar
(2020, [RA20]).

labs.nonlinear_equations.nonlinear_algorithms.bisect(f, a, b, tolerance=1.5e-08)
Apply bisect method to root finding problem.

Iterative procedure to find the root of a continuous real-values function 𝑓(𝑥) defined on a bounded interval of
the real line. Define interval [𝑎, 𝑏] that is known to contain or bracket the root of 𝑓 (i.e. the signs of 𝑓(𝑎) and
𝑓(𝑏) must differ). The given interval [𝑎, 𝑏] is then repeatedly bisected into subintervals of equal length. Each
iteration, one of the two subintervals has endpoints of different signs (thus containing the root of 𝑓 ) and is again
bisected until the size of the subinterval containing the root reaches a specified convergence tolerance.

Parameters

• f (callable) – Continuous, real-valued, univariate function 𝑓(𝑥).

• a (int or float) – Lower bound 𝑎 for 𝑥 ∈ [𝑎, 𝑏].

• b (int or float) – Upper bound 𝑎 for 𝑥 ∈ [𝑎, 𝑏]. Select 𝑎 and 𝑏 so that 𝑓(𝑏) has different
sign than 𝑓(𝑎).

• tolerance (float) – Convergence tolerance.

Returns x – Solution to the root finding problem within specified tolerance.

Return type float

Examples

>>> x = bisect(f=lambda x : x ** 3 - 2, a=1, b=2)[0]
>>> round(x, 4)
1.2599

labs.nonlinear_equations.nonlinear_algorithms.fischer(u, v, sign)
Define Fischer’s function.

𝜑±
𝑖 (𝑢, 𝑣) = 𝑢𝑖 + 𝑣𝑖 ±

√︁
𝑢2
𝑖 + 𝑣2𝑖

Parameters

• u (float) –

• v (float) –

• sign (float or int) – Gives sign of equation. Should be either 1 or -1.

Returns
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Return type callable

labs.nonlinear_equations.nonlinear_algorithms.fixpoint(f, x0, tolerance=0.0001)
Compute fixed point using function iteration.

Parameters

• f (callable) – Function 𝑓(𝑥).

• x0 (float) – Initial guess for fixed point (starting value for function iteration).

• tolerance (float) – Convergence tolerance (tolerance < 1).

Returns x – Solution of function iteration.

Return type float

Examples

>>> import numpy as np
>>> x = fixpoint(f=lambda x : x**0.5, x0=0.4, tolerance=1e-10)[0]
>>> np.allclose(x, 1)
True

labs.nonlinear_equations.nonlinear_algorithms.funcit(f, x0=2)
Apply function iteration using the fixpoint method.

labs.nonlinear_equations.nonlinear_algorithms.newton_method(f, x0, tolerance=1.5e-08)
Apply Newton’s method to solving nonlinear equation.

Solve equation using successive linearization, which replaces the nonlinear problem by a sequence of linear
problems whose solutions converge to the solution of the nonlinear problem.

Parameters

• f (callable) – (Univariate) function 𝑓(𝑥).

• x0 (float) – Initial guess for the root of 𝑓 .

• tolerance (float) – Convergence tolerance.

Returns xn – Solution of function iteration.

Return type float

1.4 Optimization

We discuss the key attributes of optimization algorithms that determine the choice of a suitable optimization algorithm.
We explore the role of noise in the criterion function and ill-conditioning for different groups of optimizers: local vs.
global, derivative-based vs. derivative-free. We conclude with some programming exercises for nonlinear least squares
problems and implement a simple maximum likelihood estimation.
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1.4.1 Optimization

[1]: from functools import partial
from temfpy.optimization import carlberg

from scipy import optimize as opt
import matplotlib.pyplot as plt
from scipy.stats import norm
import seaborn as sns
import scipy as sp
import pandas as pd
import numpy as np

from optimization_problems import get_test_function_gradient
from optimization_problems import get_parameterization
from optimization_problems import get_test_function
from optimization_auxiliary import process_results
from optimization_auxiliary import get_bounds
from optimization_plots import plot_contour
from optimization_plots import plot_surf
from optimization_plots import plot_optima_example
from optimization_plots import plot_true_observed_example

Outline

1. Setup

2. Algorithms

3. Gradient-based methods

4. Derivative-free methods

5. Benchmarking exercise

6. Special cases

Setup

In the finite-dimensional unconstrained optimization problem, one is given a function 𝑓 : 𝑅𝑛 ↦→ 𝑅 and asked to find
an 𝑥* such that 𝑓(𝑥*) ≥ 𝑓(𝑥) for all 𝑥. We call 𝑓 the objective function and 𝑥* , if it exists, the global minimum of 𝑓 .
We focus on minimum - to solve a minimization problem, simply minimize the negative of the objective.

We say that 𝑥* ∈ 𝑅𝑛 is a . . .

• strict global minimum of 𝑓 if 𝑓(𝑥*) > 𝑓(𝑥) for all 𝑥 ̸= 𝑥*.

• weak local minimum of 𝑓 if 𝑓(𝑥*) ≥ 𝑓(𝑥) for all 𝑥 in some neighborhood of 𝑥*.

• strict local minimum of 𝑓 if 𝑓(𝑥*) > 𝑓(𝑥) for all 𝑥 ̸= 𝑥* in some neighborhood of 𝑥*.

[2]: plot_optima_example()
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Let 𝑓 : 𝑅𝑛 ↦→ 𝑅 be twice continuously differentiable.

• First Order Necessary Conditions: If 𝑥* is a local minimum of 𝑓 , then 𝑓 ′(𝑥*) = 0.

• Second Order Necessary Condition: If 𝑥* is a local minimum of 𝑓 , then 𝑓 ′′(𝑥*) is negative semidefinite.

We say 𝑥 is a critical point of 𝑓 if it satisfies the first-order necessary condition.

• Sufficient Condition: If 𝑓 ′(𝑥*) = 0 and 𝑓 ′′(𝑥*) is negative definite, then 𝑥* is a strict local minimum of 𝑓 .

• Local-Global Theorem: If 𝑓 is concave, and 𝑥* is a local minimum of 𝑓 , then 𝑥* is a global minimum of 𝑓 .

Key problem attributes

• Convexity: convex vs. non-convex

• Optimization-variable type: continuous vs. discrete

• Constraints: unconstraint vs. constraint

• Number of optimization variables: low-dimensional vs. high-dimensional

These attributes dictate:

• ability to find solution

• problem complexity and computing time

• appropriate methods

• relevant software

⇒ Always begin by categorizing your problem

Optimization problems are ubiquitous in economics:

• Government maximizes social welfare

• Competitive equilibrium maximizes total surplus

• Ordinary least squares estimator minimizes sum of squares

• Maximum likelihood estimator maximizes likelihood function
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Algorithms

We are mostly blind to the function we are trying to minimize and can only compute the function at a limited number
of points. Each evaluation is computationally expensive.

[3]: plot_true_observed_example()

Goals

• reasonable memory requirements

• low failure rate, convergence conditions are met

• convergence in a few iterations with low cost for each iteration

Catergorization

• gradient-based vs. derivative-free

• global vs. local

Question

• How to compute derivatives?

Gradient-based methods

Benefits

• efficient for many variables

• well-suited for smooth objective and constraint functions

Drawbacks

• requires computing the gradient, potentially challenging and time-consuming

• convergence is only local

• not-well suited for noisy functions, derivative information flawed

Second derivative are also very useful, but . . .

• Hessians are 𝑛× 𝑛, so expensive to construct and store

• often only approximated using quasi-Newton methods
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Questions

1. How to use gradient-based algorithms to find a global optimum?

2. Any ideas on how to reduce the memory requirements for a large Hessian?
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There is two different classes of gradient-based algorithms.

• Line-search methods

– compute 𝑝𝑘 be a descent direction

– compute 𝑎𝑘 to produce a sufficient decrease in the objective function

Let’s see here for how such a line search looks like in practice for the Newton-CG algorithm.

• Trust-region methods

– determine a maximum allowable step length (trust-region radius) 𝛿𝑘

– compute step 𝑘 with ||𝑝𝑘|| ≤ ∆ using a model 𝑚(𝑝) ≈ 𝑓(𝑥𝑘 + 𝑝)

As an example implementation, see here for the scipy.optimize_trustregion.py implementation.
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Derivative-Free Methods

Benefits

• often better at finding a global minimum if function not convex

• robust with respect to noise in criterion function

• amenable to parallelization

Drawbacks

• extremely slow convergence for high-dimensional problems

There are two different classes of derivative-free algorithms.

• heuristic, inspired by nature

– basin-hopping

– evolutionary algorithms

• direct search

– directional

– simplicial

Test function

𝑓(𝑥) = 1
2

𝑛∑︁
𝑖=1

𝑎𝑖 · (𝑥𝑖 − 1)2 + 𝑏 ·

[︃
𝑛−

𝑛∑︁
𝑖=1

cos(2𝜋(𝑥𝑖 − 1))

]︃
,

where 𝑎𝑖 and 𝑏 provide the parameterization of the function.

Exercises

1. Implement this test function.

2. Visualize the shape of our test function for the one-dimensional case.

3. What is the role of the parameters 𝑎1 and 𝑏?

4. What is the functions global minimum?

[4]: ??get_test_function

[5]: ??get_parameterization

We want to be able to use our test function for different configurations of the challenges introduced by noise and ill-
conditioning.

[6]: add_noise, add_illco, x0 = False, False, [4.5, -1.5]

def get_problem(dimension, add_noise, add_illco, seed=123):
np.random.seed(seed)

(continues on next page)
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(continued from previous page)

a, b = get_parameterization(dimension, add_noise, add_illco)
get_test_function_p = partial(get_test_function, a=a, b=b)
get_test_function_gradient_p = partial(get_test_function_gradient, a=a, b=b)
return get_test_function_p, get_test_function_gradient_p

dimension = len(x0)
opt_test_function, opt_test_gradient = get_problem(dimension, add_noise, add_illco)
np.testing.assert_equal(opt_test_function([1, 1]), 0.0)

Let’s see how the surface and contour plots look like under different scenarios.

[7]: opt_test_function, _ = get_problem(dimension, add_noise, add_illco)
plot_surf(opt_test_function)

/Users/emilyschwab/Desktop/IAME_Work/ose-course-scientific-computing/labs/optimization/
→˓optimization_plots.py:62: MatplotlibDeprecationWarning: Calling gca() with keyword␣
→˓arguments was deprecated in Matplotlib 3.4. Starting two minor releases later, gca()␣
→˓will take no keyword arguments. The gca() function should only be used to get the␣
→˓current axes, or if no axes exist, create new axes with default keyword arguments. To␣
→˓create a new axes with non-default arguments, use plt.axes() or plt.subplot().
ax = fig.gca(projection="3d")
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Question

• How is the global minimum affected by the addition of noise and ill-conditioning?

Benchmarking exercise

Let’s get our problem setting and initialize a container for our results. We will use the convenient interface to
scipy.optimize.minimize. Its documentation also points you to research papers and textbooks where the details of
the algorithms are discussed in more detail. We need to invest a little in the design of our setup first, but then we can
run the benchmarking exercise with ease and even adding additional optimization algorithms is straightforward.

[8]: ALGORITHMS = ["CG", "Newton-CG", "Nelder-Mead", "Diff-Evol"]
add_noise, add_illco, dimension = False, False, 2

[9]: x0 = [4.5, -1.5]
opt_test_function, opt_test_gradient = get_problem(dimension, add_noise, add_illco)
df = pd.DataFrame(columns=["Iteration", "Distance"], index=ALGORITHMS)
df.index.name = "Method"

Let’s fix what will stay unchanged throughout.

[10]: call_optimizer = partial(
opt.minimize,
fun=opt_test_function,
x0=x0,
jac=opt_test_gradient,
options={"disp": True, "return_all": True, "maxiter": 100000},

)

We prepared some functions to process results from the optimizer calls.

[11]: ??process_results

Conjugate gradient

[12]: method = "CG"
res = call_optimizer(method=method)
initial_guess = [4.5, -1.5]
df = process_results(df, method, res)
plot_contour(opt_test_function, res["allvecs"], method, initial_guess)

Optimization terminated successfully.
Current function value: 0.000000
Iterations: 1
Function evaluations: 3
Gradient evaluations: 3

[12]: <module 'matplotlib.pyplot' from '/Users/emilyschwab/miniconda3/envs/ose-course-
→˓scientific-computing/lib/python3.8/site-packages/matplotlib/pyplot.py'>
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Newton-CG

[13]: method = "Newton-CG"
res = call_optimizer(method=method)
initial_guess = [4.5, -1.5]
df = process_results(df, method, res)
plot_contour(opt_test_function, res["allvecs"], method, initial_guess)

Optimization terminated successfully.
Current function value: 0.000000
Iterations: 2
Function evaluations: 2
Gradient evaluations: 3
Hessian evaluations: 0

[13]: <module 'matplotlib.pyplot' from '/Users/emilyschwab/miniconda3/envs/ose-course-
→˓scientific-computing/lib/python3.8/site-packages/matplotlib/pyplot.py'>
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Nelder Mead

[14]: method = "Nelder-Mead"
res = call_optimizer(method=method)
initial_guess = [4.5, -1.5]
df = process_results(df, method, res)
plot_contour(opt_test_function, res["allvecs"], method, initial_guess)

Optimization terminated successfully.
Current function value: 0.000000
Iterations: 51
Function evaluations: 95

/Users/emilyschwab/miniconda3/envs/ose-course-scientific-computing/lib/python3.8/site-
→˓packages/scipy/optimize/_minimize.py:522: RuntimeWarning: Method Nelder-Mead does not␣
→˓use gradient information (jac).
warn('Method %s does not use gradient information (jac).' % method,

[14]: <module 'matplotlib.pyplot' from '/Users/emilyschwab/miniconda3/envs/ose-course-
→˓scientific-computing/lib/python3.8/site-packages/matplotlib/pyplot.py'>
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Differential evolution

[15]: ??get_bounds

[16]: method = "Diff-Evol"
res = opt.differential_evolution(opt_test_function, get_bounds(dimension))
initial_guess = [4.5, -1.5]
plot_contour(opt_test_function, res["x"], method, initial_guess)
df = process_results(df, method, res)
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Summary

[17]: _ = sns.barplot(x="Method", y="Iteration", data=df.reset_index())

[18]: _ = sns.barplot(x="Method", y="Distance", data=df.reset_index())

Speeding up test function

We want to increase the dimensionality of our optimization problem going forward. Even in this easy setting, it is worth
to re-write our objective function using numpy to ensure its speedy execution. A faster version is already available as part
of the Python package temfpy. Below, we compare our test function to the temfpy version and assess their performance
in regard to speed.

[19]: ??get_test_function

[20]: ??carlberg
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It is very easy to introduce errors when speeding up your code as usually you face a trade-off between readability
and performance. However, setting up a simple testing harness that simply compares the results between the slow,
but readable, implementation and the fast one for numerous random test problems. For more automated, but random,
testing see Hypothesis.

[21]: def get_speed_test_problem():
add_illco, add_noise = np.random.choice([True, False], size=2)
dimension = np.random.randint(2, 100)

a, b = get_parameterization(dimension, add_noise, add_illco)
x0 = np.random.uniform(size=dimension)
return x0, a, b

Now we are ready to put our fears at ease.

[22]: for _ in range(1000):
args = get_speed_test_problem()
stats = get_test_function(*args), carlberg(*args)
np.testing.assert_almost_equal(*stats)

Let’s see whether this was worth the effort for a small and a large problem using the %timeit magic function.

[23]: dimension, add_noise, add_illco = 100, True, True
x0 = np.random.uniform(size=dimension)
a, b = get_parameterization(dimension, add_noise, add_illco)

[24]: %timeit carlberg(x0, a, b)

51.6 µs ± 20.3 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

[25]: %timeit get_test_function(x0, a, b)

618 µs ± 198 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

In this particular setting, there is no need to increase the performance even further. However, as a next step, check out
numba, for even more flexibility in speeding up your code.

Exercises

1. Repeat the exercise in the case of noise in the criterion function and try to summarize your findings.

2. What additional problems arise as the dimensionality of the problem for a 100-dimensional problem? Make sure
to use the fast implementation of the test function.

Special cases

Nonlinear least squares and maximum likelihood estimation have special structure that can be exploited to improve the
approximation of the inverse Hessian.
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Nonlinear least squares

We will estimate the following nonlinear consumption function using data from Greene’s textbook:

𝐶 = 𝛼 + 𝛽 × 𝑌 𝛾 + 𝜖

which is estimated with quarterly data on real consumption and disposable income for the U.S. economy from 1950 to
2000.

[26]: df = pd.read_pickle("material/data-consumption-function.pkl")
df.head()

[26]: realgdp realcons
Year qtr
1950 1 1610.5 1058.9

2 1658.8 1075.9
3 1723.0 1131.0
4 1753.9 1097.6

1951 1 1773.5 1122.8

Let’s confirm the basic relationship to get an idea of what to expect for the estimated parameters.

[27]: fig, ax = plt.subplots()
x = df.index.get_level_values("Year")

for name in ["realgdp", "realcons"]:
y = df[name]
ax.plot(x, y, label=name)

ax.set_xlabel("Year")
ax.set_ylabel("Value")
ax.legend()

[27]: <matplotlib.legend.Legend at 0x11dc95c70>

Now we set up the criterion function such that it fits the requirements.
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[28]: consumption = df["realcons"].values
income = df["realgdp"].values

def ssr(x, consumption, income):
alpha, beta, gamma = x
residuals = consumption - alpha - beta * income ** gamma
return residuals

ssr_partial = partial(ssr, consumption=consumption, income=income)
rslt = sp.optimize.least_squares(ssr_partial, [0, 0, 1])["x"]

Exercise

• Evaluate the fit of the model.

Maximum likelihood estimation

Greene (2012) considers the following binary choice model.

𝑃 [𝐺𝑟𝑎𝑑𝑒 = 1] = 𝐹 (𝛽0 + 𝛽1𝐺𝑃𝐴 + 𝛽2𝑇𝑈𝐶𝐸 + 𝛽3𝑃𝑆𝐼)

where 𝐹 the cumulative distribution function for either the normal distribution (Probit) or the logistic distribution
(Logit).

[29]: df = pd.read_pickle("material/data-graduation-prediction.pkl")
df.head()

[29]: GPA TUCE PSI GRADE INTERCEPT GRADE
OBS
1 2.66 20 0 0 1 0
2 2.89 22 0 0 1 0
3 3.28 24 0 0 1 0
4 2.92 12 0 0 1 0
5 4.00 21 0 1 1 1

[30]: def probit_model(beta, y, x):
F = norm.cdf(x @ beta)
fval = (y * np.log(F) + (1 - y) * np.log(1 - F)).sum()
return -fval

[31]: x, y = df[["INTERCEPT", "GPA", "TUCE", "PSI"]], df["GRADE"]
rslt = opt.minimize(probit_model, [0.0] * 4, args=(y, x))

46 Chapter 1. Labs



OSE scientific computing

Exercise

• Amend the code so that you can simply switch between estimating a Probit or Logit model.

Resources

• Kevin T. Carlberg: https://kevintcarlberg.net

Software

• Ipopt: https://coin-or.github.io/Ipopt

• SNOPT (Sparse Nonlinear OPTimizer): https://ccom.ucsd.edu/~optimizers/solvers/snopt

• Gurobi https://www.gurobi.com

• IBM CPLEX Optimizer https://www.ibm.com/analytics/cplex-optimizer

Books

• Nocedal, J., & Wright, S. (2006). *Numerical optimization* . Springer Science & Business Media.

• Boyd, S., Boyd, S. P., & Vandenberghe, L. (2004). *Convex optimization*. Cambridge university press.

• Kochenderfer, M. J., & Wheeler, T. A. (2019). *Algorithms for optimization*. Mit Press.

• Fletcher, R. (2000). *Practical methods of optimization (2nd edn)*. Wiley.

• Nesterov, Y. (2018). *Lectures on convex optimization*. Springer Nature Switzerland.

Research

• Moré, J. J., & Wild, S. M. (2009). Benchmarking derivative-free optimization algorithms. SIAM Journal on
Optimization, 20(1), 172-191.

• Beiranvand, V., Hare, W., & Lucet, Y. (2017). Best practices for comparing optimization algorithms. Optimiza-
tion and Engineering, 18, 815–848.

• Bartz-Beielstein, T., et al. (2020). Benchmarking in optimization: Best practice and open issues. arXiv preprint
arXiv:2007.03488..

1.5 Integration

We examine different strategies for the numerical integration of functions. We discuss rules based on Newton-Cotes
quadrature formulas, Gaussian quadrature, and Monte Carlo methods in the uni-dimensional and multi-dimensional
case. We conclude by comparing the performance of each approach under different scenarios.
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1.5.1 Integration

[1]: import numpy as np

from integration_algorithms import monte_carlo_quasi_two_dimensions
from integration_algorithms import quadrature_newton_trapezoid_one
from integration_algorithms import quadrature_newton_simpson_one
from integration_algorithms import quadrature_gauss_legendre_one
from integration_algorithms import quadrature_gauss_legendre_two
from integration_algorithms import monte_carlo_naive_one

from integration_plots import plot_naive_monte_carlo_randomness
from integration_plots import plot_naive_monte_carlo_error
from integration_plots import plot_gauss_legendre_weights
from integration_plots import plot_benchmarking_exercise
from integration_plots import plot_naive_monte_carlo
from integration_plots import plot_quasi_monte_carlo
from integration_plots import plot_starting_illustration
from integration_plots import plot_trapezoid_rule_illustration
from integration_plots import plot_simpsons_rule_illustration

from integration_problems import problem_kinked
from integration_problems import problem_smooth

Outline

1. Setup

2. Newton-Cotes rules

3. Gaussian formulas

4. Monte Carlo integration

5. Resources

Setup

Consider finding the area under a continuous real-valued function 𝑓 over a bounded interval [𝑎, 𝑏]:

𝐴 =

∫︁ 𝑏

𝑎

𝑓(𝑥)𝑑𝑥

Let’s look a visual representation of our problem.

[2]: plot_starting_illustration()
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Most numerical methods for computing this integral split up the original integral into a sum of several integrals, each
covering a smaller part of the original integration interval [𝑎, 𝑏]. This re-writing of the integral is based on a selection
of integration points 𝑥𝑖, 𝑖 = 0, 1, ..., 𝑛 that are distributed on the interval [𝑎, 𝑏]. Integration points may, or may not, be
evenly distributed.

Given the integration points, the original integral is re-written as a sum of integrals, each integral being computed over
the sub-interval between two consecutive integration points. The integral from the beginning is thus expressed as:∫︁ 𝑏

𝑎

𝑓(𝑥)𝑑𝑥 =

∫︁ 𝑥1

𝑥0

𝑓(𝑥)𝑑𝑥 +

∫︁ 𝑥2

𝑥1

𝑓(𝑥)𝑑𝑥 + ... +

∫︁ 𝑥𝑛

𝑥𝑛−1

𝑓(𝑥)𝑑𝑥,

where 𝑥0 = 𝑎 and 𝑥𝑛 = 𝑏.

The different integration methods will differ in the way they approximate each integral on the right hand side. The
fundamental idea is that each term is an integral over a small interval [𝑥𝑖, 𝑥𝑖+1], and over this small interval, it makes
sense to approximate 𝑓 by a simple shape

Newton-Cotes rules

Newton–Cotes quadrature rules are a group of formulas for numerical integration (also called quadrature) based on
evaluating the integrand at equally spaced points. The integration points are then computed as

𝑥𝑖 = 𝑎 + 𝑖ℎ, 𝑖 = 0, 1, ..., 𝑛,

where ℎ = (𝑏− 𝑎)/𝑛

The closed Newton-Cotes formula of degree 𝑛 is stated as∫︁ 𝑏

𝑎

𝑓(𝑥)𝑑𝑥 ≈
𝑛∑︁

𝑖=0

𝜔𝑖𝑓(𝑥𝑖).

We will consider the first two degrees in more detail:
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• Trapezoid rule

• Simpson’s rule

Trapezoid rule

The Trapezoid rule approximates the area under the function 𝑓 with the area under a piecewise linear approximation
to 𝑓 .

[3]: plot_trapezoid_rule_illustration()
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More formally: ∫︁ 𝑏

𝑎

𝑓(𝑥)𝑑𝑥 =

∫︁ 𝑥1

𝑥0

𝑓(𝑥)𝑑𝑥 +

∫︁ 𝑥2

𝑥1

𝑓(𝑥)𝑑𝑥 + ... +

∫︁ 𝑥𝑛

𝑥𝑛−1

𝑓(𝑥)𝑑𝑥

≈ ℎ
𝑓(𝑥0)− 𝑓(𝑥1)

2
+ ℎ

𝑓(𝑥1)− 𝑓(𝑥2)

2
+ ... + ℎ

𝑓(𝑥𝑛−1)− 𝑓(𝑥𝑛)

2
,
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which we can further simplify to:∫︁ 𝑏

𝑎

𝑓(𝑥)𝑑𝑥 ≈ 0.5ℎ𝑓(𝑥0) + ℎ

𝑛−1∑︁
𝑖=1

𝑓(𝑥𝑖) + 0.5ℎ𝑓(𝑥𝑛).

The weights are then the following:

𝜔𝑖 =

{︃
ℎ/2 if 𝑖 ∈ {0, 𝑛}
ℎ otherwise

[4]: ??quadrature_newton_trapezoid_one

Signature: quadrature_newton_trapezoid_one(f, a, b, n)
Source:
def quadrature_newton_trapezoid_one(f, a, b, n):

"""Return quadrature newton trapezoid example."""
xvals = np.linspace(a, b, n + 1)
fvals = np.tile(np.nan, n + 1)
h = xvals[1] - xvals[0]

weights = np.tile(h, n + 1)
weights[0] = weights[-1] = 0.5 * h

for i, xval in enumerate(xvals):
fvals[i] = f(xval)

return np.sum(weights * fvals)
File: ~/external-storage/sciebo/office/OpenSourceEconomics/teaching/scientific-
→˓computing/course/lectures/integration/integration_algorithms.py
Type: function

[5]: integrand = quadrature_newton_trapezoid_one(np.exp, 0, 1, 1000)
np.testing.assert_almost_equal(integrand, np.exp(1) - 1)

Simpson’s rule

Simpson’s rule approximates the area under a function 𝑓 with the area under a piecewise quadratic approximation to 𝑓 .

[6]: plot_simpsons_rule_illustration()
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The weights are the following:

𝑤𝑖 =

⎧⎪⎨⎪⎩
ℎ/3 for 𝑖 ∈ [0, 𝑛]

4ℎ/3 for 0 < 𝑖 < 𝑛, 𝑖 even
2ℎ/3 for 0 < 𝑖 < 𝑛, 𝑖 odd.

[7]: ??quadrature_newton_simpson_one

Signature: quadrature_newton_simpson_one(f, a, b, n)
Source:
def quadrature_newton_simpson_one(f, a, b, n):

"""Return quadrature newton simpson example."""
if n % 2 == 0:

raise Warning("n must be an odd integer. Increasing by 1")
n += 1

xvals = np.linspace(a, b, n)
fvals = np.tile(np.nan, n)

h = xvals[1] - xvals[0]

weights = np.tile(np.nan, n)
weights[0::2] = 2 * h / 3
weights[1::2] = 4 * h / 3
weights[0] = weights[-1] = h / 3

for i, xval in enumerate(xvals):
fvals[i] = f(xval)

(continues on next page)
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(continued from previous page)

return np.sum(weights * fvals)
File: ~/external-storage/sciebo/office/OpenSourceEconomics/teaching/scientific-
→˓computing/course/lectures/integration/integration_algorithms.py
Type: function

[8]: integrand = quadrature_newton_simpson_one(np.exp, 0, 1, 1001)
np.testing.assert_almost_equal(integrand, np.exp(1) - 1)

Gaussian formulas

Gaussian quadrature formulas employ a very different logic to compute the area under a curve 𝑓 over a bounded interval
[𝑎, 𝑏]. Specifically, the 𝑛 quadrature nodes 𝑥𝑖 and 𝑛 quadrature weights 𝜔𝑖 are chosen to exactly integrate polynomials
of degree 2𝑛− 1 or less.

Gaussian quadrature approximations of the form:∫︁ 𝑏

𝑎

𝑓(𝑥)𝑤(𝑥)𝑑𝑥 ≈
𝑛∑︁

𝑖=1

𝜔𝑖𝑓(𝑥𝑖)

for any nonnegative weighing function 𝑤(𝑥). Versions of 𝑤(𝑥) lead to include Gauss-Legendre, Gauss-Chebyshev,
Gauss-Hermite and Gauss-Laguerre.

We start from the special domain between [−1, 1], again the formula for our approximate solution looks very similar.∫︁ 1

−1

𝑓(𝑥)𝑑𝑥 ≈
𝑛∑︁

𝑖=1

𝑤𝑖𝑓(𝑥𝑖)

So, more generally using a change of variables:∫︁ 𝑏

𝑎

𝑓(𝑥) =≈ 𝑏− 𝑎

2

𝑛∑︁
𝑖=1

𝑤𝑖𝑓

(︂
(𝑥𝑖 + 1)(𝑏− 𝑎)

2
+ 𝑎

)︂
Unlike in the case of the Newton-Cotes approach, Gaussian nodes are not uniformly spaced and do not include the
integration limits.

[9]: [plot_gauss_legendre_weights(deg) for deg in [5, 11, 21]]

1.5. Integration 55



OSE scientific computing

56 Chapter 1. Labs



OSE scientific computing

[9]: [None, None, None]

Question

• What are the properties of the weights?

[10]: ??quadrature_gauss_legendre_one

Signature: quadrature_gauss_legendre_one(f, a, b, n)
Source:
def quadrature_gauss_legendre_one(f, a, b, n):

"""Return quadrature gauss legendre example."""
xvals, weights = np.polynomial.legendre.leggauss(n)
xval_trans = (b - a) * (xvals + 1.0) / 2.0 + a

fvals = np.tile(np.nan, n)
for i, xval in enumerate(xval_trans):

fvals[i] = ((b - a) / 2.0) * f(xval)

return np.sum(weights * fvals)
File: ~/external-storage/sciebo/office/OpenSourceEconomics/teaching/scientific-
→˓computing/course/lectures/integration/integration_algorithms.py
Type: function

[11]: integrand = quadrature_gauss_legendre_one(np.exp, 0, 1, 1000)
np.testing.assert_almost_equal(integrand, np.exp(1) - 1)

Benchmarking

Exercise

• Compare the performance of our integration routines on the following two integrals.

We study the following two cases:

𝑓(𝑥) =

∫︁ 1

−1

𝑒−𝑥𝑑𝑥

𝑓(𝑥) =

∫︁ 1

−1

√︀
|𝑥|𝑑𝑥.

[12]: plot_benchmarking_exercise()
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How can we extend the ideas so far to multidimensional integration?∫︁
𝑥

∫︁
𝑦

𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦.

The product rule approximates the integral with the following sum:
𝑚∑︁

𝑖𝑥=1

𝑚∑︁
𝑖𝑦=1

𝜔𝑖𝑥𝜔𝑖𝑦𝑓(𝑥1𝑦1).

A difficulty of this approach is the curse of dimensionality as the number of nodes inreases exponentially with the
number of dimensions.

[13]: ??quadrature_gauss_legendre_two

Signature: quadrature_gauss_legendre_two(f, a=-1, b=1, n=10)
Source:
def quadrature_gauss_legendre_two(f, a=-1, b=1, n=10):

"""Return quadrature gauss legendre example."""
n_dim = int(np.sqrt(n))

xvals, weight_uni = np.polynomial.legendre.leggauss(n_dim)
xvals_transformed = (b - a) * (xvals + 1.0) / 2.0 + a

weights = np.tile(np.nan, n_dim ** 2)
fvals = np.tile(np.nan, n_dim ** 2)

counter = 0
for i, x in enumerate(xvals_transformed):

for j, y in enumerate(xvals_transformed):
weights[counter] = weight_uni[i] * weight_uni[j]
fvals[counter] = f([x, y])
counter += 1

return ((b - a) / 2) ** 2 * np.sum(weights * np.array(fvals))
File: ~/external-storage/sciebo/office/OpenSourceEconomics/teaching/scientific-
→˓computing/course/lectures/integration/integration_algorithms.py
Type: function
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Monte Carlo integration

Naive Monte Carlo integration uses random sampling of a function to numerically compute an estimate of its integral.
We can approximate this integral by averaging 𝑁 samples of the function 𝑓 drawn from a uniform distribution between
𝑎 and 𝑏. ∫︁ 𝑏

𝑎

𝑓(𝑥)𝑑𝑥 ≈ (𝑏− 𝑎)
1

𝑁

𝑁∑︁
𝑖=1

𝑓(𝑥𝑖)

Why?

𝐸

[︃
(𝑏− 𝑎)

1

𝑁

𝑁∑︁
𝑖=1

𝑓(𝑥𝑖)

]︃
= (𝑏− 𝑎)

1

𝑁

𝑁∑︁
𝑖=1

𝐸 [𝑓(𝑥𝑖)]

= (𝑏− 𝑎)
1

𝑁

𝑁∑︁
𝑖=1

[︃∫︁ 𝑏

𝑎

𝑓(𝑥)
1

𝑏− 𝑎
𝑑𝑥

]︃

=
1

𝑁

𝑁∑︁
𝑖=1

∫︁ 𝑏

𝑎

𝑓(𝑥)𝑑𝑥

=

∫︁ 𝑏

𝑎

𝑓(𝑥)𝑑𝑥.

[14]: ??monte_carlo_naive_one

Signature: monte_carlo_naive_one(f, a=0, b=1, n=10, seed=123)
Source:
def monte_carlo_naive_one(f, a=0, b=1, n=10, seed=123):

"""Return naive monte carlo example."""
np.random.seed(seed)
xvals = np.random.uniform(size=n)
fvals = np.tile(np.nan, n)
weights = np.tile(1 / n, n)

scale = b - a
for i, xval in enumerate(xvals):

fvals[i] = f(a + xval * (b - a))

return scale * np.sum(weights * fvals)
File: ~/external-storage/sciebo/office/OpenSourceEconomics/teaching/scientific-
→˓computing/course/lectures/integration/integration_algorithms.py
Type: function

Monte Carlo integration only converges very slowly. Let’s consider our smooth benchmarking example from earlier
and compare the naive Monte Carlo approach to the quadrature methods.

[15]: plot_naive_monte_carlo_error(max_nodes=200)
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Naive Monte Carlo integration differs from our earlier methods as the approximation itself is a random variable. How
about the level of randomness at a given number (𝑛 = 50) of integration nodes?

[16]: plot_naive_monte_carlo_randomness()

However, Monte Carlo integration is particular useful when tackling multidimensional integrals. Let’s consider the
computation of a two dimensional integral going forward.

[17]: plot_naive_monte_carlo(100)
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Quasi-Monte Carlo employ deterministic sequences of nodes 𝑥𝑖 with the property that

lim
𝑛→∞

𝑏− 𝑎

𝑛

𝑛∑︁
𝑖=1

𝑓(𝑥𝑖) =

∫︁ 𝑏

𝑎

𝑓(𝑥)𝑑𝑥.

Deterministic sequences of nodes chosen to fill space in a regular manner typically provide more accurate integration
approximations than pseudo-random sequences. These sequences are readily available in the chaospy package. The
documentation of the package also includes a tutorial on Monte Carlo integration.

[18]: plot_quasi_monte_carlo(3)

Otherwise, all looks pretty similar to our earlier implementation. Note that the default rule actually takes us back to
the naive Monte Carlo method.

[19]: ??monte_carlo_quasi_two_dimensions

Signature: monte_carlo_quasi_two_dimensions(f, a=0, b=1, n=10, rule='random')
Source:
def monte_carlo_quasi_two_dimensions(f, a=0, b=1, n=10, rule="random"):

"""Return Monte Carlo example (two-dimensional).
(continues on next page)
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(continued from previous page)

Corresponds to naive Monthe Carlo for `rule='random'`. Restricted to same
integration domain for both variables.
"""
distribution = cp.J(cp.Uniform(a, b), cp.Uniform(a, b))
samples = distribution.sample(n, rule=rule).T
volume = (b - a) ** 2

fvals = np.tile(np.nan, n)
weights = np.tile(1 / n, n)

for i, xval in enumerate(samples):
fvals[i] = f(xval)

return volume * np.sum(weights * fvals)
File: ~/external-storage/sciebo/office/OpenSourceEconomics/teaching/scientific-
→˓computing/course/lectures/integration/integration_algorithms.py
Type: function

Let’s consider the following test function from Genz (1984).
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Exercises

1. What are the properties of the function?

2. Compare the performance naive and quasi Monte Carlo integration routines for 𝑢 = (0.5, 0.5) and 𝑎 = (5, 5)
over the two-dimensional unit cube.

3. How does Gauss-Legendre quadrature perform?

Applying the integration routines to functions with other input arguments can be achieved with some small modifi-
cations. Here we pass in our benchmarking function without any default arguments to a modified naive Monte Carlo
integration routine.

[20]: def genz_discontinuous_no_defaults(x, u, a):
if x[0] > u[0] or x[1] > u[1]:

return 0
else:

return np.exp((a * x).sum())

def monte_carlo_naive_with_args(f, args=(), a=0, b=1, n=10, seed=128):
(continues on next page)
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np.random.seed(seed)
xvals = np.random.uniform(low=a, high=b, size=2 * n).reshape(n, 2)
volume = (b - a) ** 2

fvals = np.tile(np.nan, n)
weights = np.tile(1 / n, n)

for i, xval in enumerate(xvals):
# Here is the main modification that passes in the arguments by position now.
fvals[i] = f(xval, *args)

return volume * np.sum(weights * fvals)

u, a = (0.5, 0.5), (5, 5)
rslt = monte_carlo_naive_with_args(genz_discontinuous_no_defaults, args=(u, a))

Resources

Research

• https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1870703

• https://www.sciencedirect.com/science/article/abs/pii/S0304407607002552

• https://arxiv.org/abs/1908.04110

• Philip J. Davis and Philip Rabinowitz, Methods of Numerical Integration.

• https://www.sciencedirect.com/science/article/pii/S0021999185712090

• https://ins.uni-bonn.de/media/public/publication-media/sparse_grids_nutshell.pdf?pk=639

Other resources

• http://hplgit.github.io/prog4comp/doc/pub/p4c-sphinx-Python/._pylight004.html

• http://people.duke.edu/~ccc14/cspy/15C_MonteCarloIntegration.html

• https://www.math.ubc.ca/~pwalls/math-python/integration/integrals/

• https://guido.vonrudorff.de/wp-content/uploads/2020/05/NumericalIntegration.pdf

• https://readthedocs.org/projects/mec-cs101-integrals/downloads/pdf/latest/
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References

• Genz, A. (1984, September). Testing multidimensional integration routines. In Proc. of international confer-
ence on Tools, methods and languages for scientific and engineering computation (pp. 81-94). Elsevier North-
Holland, Inc..

1.5.2 Functions

This module contains the algorithms for the integration lab.

labs.integration.integration_algorithms.monte_carlo_naive_one(f, a=0, b=1, n=10, seed=123)
Return naive monte carlo example.

labs.integration.integration_algorithms.monte_carlo_naive_two_dimensions(f, a=0, b=1, n=10,
seed=128)

Return naive monte carlo example (two-dimensional).

Restricted to same integration domain for both variables.

labs.integration.integration_algorithms.monte_carlo_quasi_two_dimensions(f, a=0, b=1, n=10,
rule='random')

Return Monte Carlo example (two-dimensional).

Corresponds to naive Monthe Carlo for rule=’random’. Restricted to same integration domain for both variables.

labs.integration.integration_algorithms.quadrature_gauss_legendre_one(f, a, b, n)
Return quadrature gauss legendre example.

labs.integration.integration_algorithms.quadrature_gauss_legendre_two(f, a=- 1, b=1, n=10)
Return quadrature gauss legendre example.

labs.integration.integration_algorithms.quadrature_newton_simpson_one(f, a, b, n)
Return quadrature newton simpson example.

labs.integration.integration_algorithms.quadrature_newton_trapezoid_one(f, a, b, n)
Return quadrature newton trapezoid example.

1.6 Approximation

We study the function approximation using polynomials. We combine different strategies for the interpolation nodes
and basis functions to study how they interact to determine the approximation’s overall quality. We use this as an
opportunity to iteratively develop a function that allows to combine the different ingredients to set up an interpolator.
Finally, we extend the ideas to the case of multivariate interpolation.

1.6.1 Approximation

Outline

1. Setup

2. Polynomial interpolation

3. Resources
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Setup

In many computational economics applications, we need to replace an analytically intractable function 𝑓 : 𝑅𝑛 → 𝑅
with a numerically tractable approximation 𝑓 . In some applications, f can be evaluated at any point of its domain, but
with difficulty, and we wish to replace it with an approximation 𝑓 that is easier to work with.

We study interpolation, a general strategy for forming a tractable approximation to a function that can be evaluated at
any point of its domain. Consider a real-valued function 𝑓 defined on an interval of the real line that can be evaluated
at any point of its domain.

Generally, we will approximate 𝑓 using a function 𝑓 that is a finite linear combination of n known basis functions
𝜑1, 𝜑2, ..., 𝜑𝑛 of our choosing:

𝑓(𝑥) ≈ 𝑓(𝑥) ≡
𝑛∑︁

𝑗=1

𝑐𝑗𝜑𝑗(𝑥).

We will fix the n basis coefficients 𝑐1, 𝑐2, ..., 𝑐𝑛 by requiring 𝑓 to interpolate, that is, agree with 𝑓 , at 𝑛 interpolation
nodes 𝑥1, 𝑥2, ..., 𝑥𝑛 of our choosing.

The most readily recognizable basis is the monomial basis:

𝜑0(𝑥) = 1

𝜑1(𝑥) = 𝑥

𝜑2(𝑥) = 𝑥2

.

𝜑𝑛(𝑥) = 𝑥𝑛.

This can be used to construct the polynomial approximations:

𝑓(𝑥) ≈ 𝑓(𝑥) ≡ 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥
2 + ...𝑐𝑛𝑥

𝑛

There are other basis functions with more desirable properties and there are many different ways to choose the inter-
polation nodes.

Regardless of how the 𝑛 basis functions and nodes are chosen, computing the basis coefficients reduces to solving a
linear equation.

𝑛∑︁
𝑗=1

𝑐𝑗𝜑𝑗(𝑥) = 𝑓(𝑥), 𝑖 = 1, ..., 𝑛

Interpolation schemes differ only in how the basis functions 𝜑𝑗 and interpolation nodes 𝑥𝑗 are chosen.

[1]: from functools import partial
from temfpy.interpolation import runge
import warnings

from scipy.interpolate import interp1d
import matplotlib.pyplot as plt
import numpy as np

from approximation_algorithms import get_interpolator_flexible_basis_flexible_nodes
from approximation_algorithms import get_interpolator_monomial_flexible_nodes
from approximation_algorithms import get_interpolator_monomial_uniform
from approximation_algorithms import get_interpolator_runge_baseline

(continues on next page)
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from approximation_auxiliary import compute_interpolation_error
from approximation_auxiliary import get_chebyshev_nodes
from approximation_auxiliary import get_uniform_nodes

from approximation_plots import plot_two_dimensional_problem
from approximation_plots import plot_reciprocal_exponential
from approximation_plots import plot_runge_different_nodes
from approximation_plots import plot_runge_function_cubic
from approximation_plots import plot_two_dimensional_grid
from approximation_plots import plot_approximation_nodes
from approximation_plots import plot_basis_functions
from approximation_plots import plot_runge_multiple
from approximation_plots import plot_runge

from approximation_problems import problem_reciprocal_exponential
from approximation_problems import problem_two_dimensions

Polynomial interpolation

A polynomial is an expression consisting of variables and coefficients, that involves only the operations of addition,
subtraction, multiplication, and non-negative integer exponentiation of variables.

The Weierstrass Theorem asserts that any continuous real-valued function can be approximated to an arbitrary degree
of accuracy over a bounded interval by a polynomial.

Specifically, if 𝑓 is continuous on [𝑎, 𝑏] and 𝜖 > 0, then there exists a polynomial 𝑝 such that

max
𝑥∈[𝑎,𝑏]

|𝑓(𝑥)− 𝑝(𝑥)| < 𝜖

• How to find a polynomial that provides a desired degree of accuracy?

• What degree of the polynomial is required?

Naive polynomial interpolation

Let’s start with a basic setup, where we use a uniform grid and monomial basis functions.

𝑓(𝑥) ≡
𝑛∑︁

𝑗=0

𝑐𝑗𝑥
𝑗

[2]: ??get_uniform_nodes

Signature: get_uniform_nodes(n, a=-1, b=1)
Source:
def get_uniform_nodes(n, a=-1, b=1):

"""Return uniform nodes."""
return np.linspace(a, b, num=n)

File: ~/external-storage/sciebo/office/OpenSourceEconomics/teaching/scientific-
→˓computing/course/labs/approximation/approximation_auxiliary.py
Type: function
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[3]: plot_approximation_nodes([5, 10, 15, 20], nodes="uniform")

Now we can get a look at the interpolation nodes.

[4]: plot_basis_functions("monomial")
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Let’s look at the performance of this approach for the Runge function for 𝑥 ∈ [0, 1].

𝑓(𝑥) =
1

(1 + 25𝑥2)

[5]: plot_runge()

Due to its frequent use, numpy does offer a convenience class to work with polynomials. See here for its documentation.

[6]: from numpy.polynomial import Polynomial as P # noqa E402
from numpy.polynomial import Chebyshev as C # noqa E402

We will use the attached methods to develop a flexible interpolation set in an iterative fashion.’

[7]: ??get_interpolator_runge_baseline

Signature: get_interpolator_runge_baseline(func)
Source:
def get_interpolator_runge_baseline(func):

"""Return interpolator runge function (baseline)."""
(continues on next page)
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xnodes = np.linspace(-1, 1, 5)
poly = np.polynomial.Polynomial.fit(xnodes, func(xnodes), 5)
return poly

File: ~/external-storage/sciebo/office/OpenSourceEconomics/teaching/scientific-
→˓computing/course/labs/approximation/approximation_algorithms.py
Type: function

[8]: with warnings.catch_warnings():
warnings.simplefilter("ignore")

interpolant = get_interpolator_runge_baseline(runge)
xvalues = np.linspace(-1, 1, 10000)
yfit = interpolant(xvalues)

Question

• Why the warnings?

Since we have a good understanding what is causing the warning, we can simply turn it of going forward. A documen-
tation that shows how to deal with more fine-grained filters is available here.

[9]: warnings.simplefilter("ignore")

Now we are read to plot it against the true function.

[10]: fig, ax = plt.subplots()
ax.plot(xvalues, runge(xvalues), label="True")
ax.plot(xvalues, yfit, label="Approximation")
ax.legend()

[10]: <matplotlib.legend.Legend at 0x7fc295f08f70>

We evaluate the error in our approximation by the the following statistic.
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[11]: ??compute_interpolation_error

Signature: compute_interpolation_error(error)
Source:
def compute_interpolation_error(error):

"""Compute interpolation error."""
return np.log10(np.linalg.norm(error, np.inf))

File: ~/external-storage/sciebo/office/OpenSourceEconomics/teaching/scientific-
→˓computing/course/labs/approximation/approximation_auxiliary.py
Type: function

[12]: compute_interpolation_error(yfit - runge(xvalues))

[12]: -0.35817192020499683

Exercises

1. Generalize the function to allow to approximate the function with a polynomial of generic degree.

2. How does the quality of the approximation change as we increase the number of interpolation points?

[13]: with warnings.catch_warnings():
warnings.simplefilter("ignore")
plot_runge_multiple()

What can be done? First we explore a different way to choose the the nodes.

Theory asserts that the best way to approximate a continuous function with a polynomial over a bounded interval [𝑎, 𝑏]
is to interpolate it at so called Chebychev nodes:

𝑥𝑖 =
𝑎 + 𝑏

2
+

𝑏− 𝑎

2
cos

(︂
𝑛− 𝑖 + 0.5

𝑛
𝜋

)︂

[14]: ??get_chebyshev_nodes
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Signature: get_chebyshev_nodes(n, a=-1, b=1)
Source:
def get_chebyshev_nodes(n, a=-1, b=1):

"""Return Chebyshev nodes."""
nodes = np.tile(np.nan, n)

for i in range(1, n + 1):
nodes[i - 1] = (a + b) / 2 + ((b - a) / 2) * np.cos(((n - i + 0.5) / n) * np.pi)

return nodes
File: ~/external-storage/sciebo/office/OpenSourceEconomics/teaching/scientific-
→˓computing/course/labs/approximation/approximation_auxiliary.py
Type: function

Let’s look at a visual representation.

[15]: plot_approximation_nodes([5, 10, 15, 20], nodes="chebychev")

The Chebychev nodes are not evenly spaced and do not include the endpoints of the approximation interval. They are
more closely spaced near the endpoints of the approximation interval and less so near the center.

If 𝑓 is continuous . . .

• Rivlin’s Theorem asserts that Chebychev-node polynomial interpolation is nearly optimal, that is, it affords an
approximation error that is very close to the lowest error attainable with another polynomial of the same degree.

• Jackson’s Theorem asserts that Chebychev-node polynomial interpolation is consistent, that is, the approximation
error vanishes as the degree of the polynomial increases.

[16]: ??get_interpolator_monomial_flexible_nodes

Signature:
get_interpolator_monomial_flexible_nodes(

func,
degree,
nodes='uniform',
a=-1,
b=1,

(continues on next page)
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(continued from previous page)

)
Source:
def get_interpolator_monomial_flexible_nodes(func, degree, nodes="uniform", a=-1, b=1):

"""Return monomial function (flexible nodes)."""
if nodes == "uniform":

get_nodes = get_uniform_nodes
elif nodes == "chebychev":

get_nodes = get_chebyshev_nodes

xnodes = get_nodes(degree, a, b)
poly = np.polynomial.Polynomial.fit(xnodes, func(xnodes), degree)

return poly
File: ~/external-storage/sciebo/office/OpenSourceEconomics/teaching/scientific-
→˓computing/course/labs/approximation/approximation_algorithms.py
Type: function

[17]: intertp = get_interpolator_monomial_flexible_nodes(runge, 11, nodes="chebychev")
intertp(np.linspace(-1, 1, 10))

[17]: array([-0.00532688, 0.04177453, 0.12887422, 0.20826539, 0.85508579,
0.85508579, 0.20826539, 0.12887422, 0.04177453, -0.00532688])

Let’s compare the performance of the two approaches.

[18]: plot_runge_different_nodes()
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However, merely interpolating at the Chebychev nodes does not eliminate ill-conditioning. Ill-conditioning stems from
the choice of basis functions, not the choice of interpolation nodes. Fortunately, there is alternative to the monomial
basis that is ideal for expressing Chebychev-node polynomial interpolants. The optimal basis for expressing Chebychev-
node polynomial interpolants is called the Chebychev polynomial basis.

[19]: plot_basis_functions("chebychev")
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Combining the Chebychev basis polynomials and Chebychev interpolation nodes yields an extremely well-conditioned
interpolation equation and allows to approximate any continuous function to high precision. Let’s put it all together
now.

[20]: ??get_interpolator_flexible_basis_flexible_nodes

Signature:
get_interpolator_flexible_basis_flexible_nodes(

func,
degree,
basis='monomial',
nodes='uniform',
a=-1,
b=1,

)
Source:
def get_interpolator_flexible_basis_flexible_nodes(

func, degree, basis="monomial", nodes="uniform", a=-1, b=1
):

"""Return interpolator (flexible basis, flexible nodes)."""
if nodes == "uniform":

(continues on next page)
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(continued from previous page)

get_nodes = get_uniform_nodes
elif nodes == "chebychev":

get_nodes = get_chebyshev_nodes

if basis == "monomial":
fit = np.polynomial.Polynomial.fit

elif basis == "chebychev":
fit = np.polynomial.Chebyshev.fit

xnodes = get_nodes(degree, a, b)
poly = fit(xnodes, func(xnodes), degree)

return poly
File: ~/external-storage/sciebo/office/OpenSourceEconomics/teaching/scientific-
→˓computing/course/labs/approximation/approximation_algorithms.py
Type: function

How well can we actually do now?

[21]: for degree in [5, 10, 15]:
interp = get_interpolator_flexible_basis_flexible_nodes(

runge, degree, nodes="uniform", basis="monomial"
)
xvalues = np.linspace(-1, 1, 10000)
yfit = interp(xvalues)

fig, ax = plt.subplots()
ax.plot(xvalues, runge(xvalues), label="True")
ax.plot(xvalues, yfit, label="Approximation")
ax.legend()
ax.set_title(f"Degree {degree}")
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Spline interpolation

Piecewise polynomial splines, or simply splines for short, are a rich, flexible class of functions that may be used instead
of high degree polynomials to approximate a real-valued function over a bounded interval. Generally, an order 𝑘 spline
consists of a series of 𝑘𝑡ℎ degree polynomial segments spliced together so as to preserve continuity of derivatives of
order 𝑘 − 1 or less

• A first-order or linear spline is a series of line segments spliced together to form a continuous function.

• A third-order or cubic spline is a series of cubic polynomials segments spliced together to form a twice contin-
uously differentiable function.
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A linear spline with n + 1 evenly-spaced interpolation nodes 𝑥0, 𝑥1, ..., 𝑥𝑛 on the interval [𝑎, 𝑏] may be written as a
linear combination of the 𝑛 + 1 basis functions:

𝜑𝑗(𝑥) =

{︃
1− |𝑥−𝑥𝑗 |

ℎ |𝑥− 𝑥𝑗 | ≤ ℎ

0

where ℎ = (𝑏− 𝑎)/𝑛 is the distance between the nodes.

The linear spline approximant of 𝑓 takes thus the form:

𝑓(𝑥) =

𝑛∑︁
𝑗=1

𝑓(𝑥𝑗)𝜑𝑗(𝑥)

[22]: plot_basis_functions("linear")
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This kind of interpolation procedure is frequently used in practice and readily available in scipy. The interp1
function is documented here.

[23]: x_fit = get_uniform_nodes(10, -1, 1)
(continues on next page)
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(continued from previous page)

f_inter = interp1d(x_fit, runge(x_fit))
f_inter(0.5)

[23]: array(0.15222463)

Let’s get a feel for this approach using our earlier test function.

[24]: x_eval = get_uniform_nodes(10000, -1, 1)

for degree in [3, 5, 10, 15]:
x_fit = get_uniform_nodes(degree, -1, 1)

interp = interp1d(x_fit, runge(x_fit))
yfit = interp(xvalues)

fig, ax = plt.subplots()
ax.plot(xvalues, runge(xvalues), label="True")
ax.plot(xvalues, yfit, label="Approximation")
ax.legend()
ax.set_title(f"Degree {degree}")
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Question

• How about other ways to place the interpolation nodes?

Another widely-used specification relies on cubic splines. Here are the corresponding basis functions.

It is directly integrated into the interp1 function.

[25]: x_fit = get_uniform_nodes(10, -1, 1)
f_inter = interp1d(x_fit, runge(x_fit), kind="cubic")
f_inter(0.5)

[25]: array(0.12635205)

How about approximating Runge’s function.

[26]: plot_runge_function_cubic()
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Let’s take stock of our interpolation toolkit by running a final benchmarking exercise and then try to extract some
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Exercises

Let’s consider two test functions: problem_reciprocal_exponential, problem_kinked.

1. Visualize both over the range from -1 to 1. What is the key differences in their properties?

2. Set up a function that allows you to flexibly interpolate using either Chebychev polynomials (monomial basis,
Chebychev nodes) or linear and cubic splines.

3. Compare the performance for the following degrees: 10, 20, 30.

We collect some rules-of-thumb:

• Chebychev-node polynomial interpolation dominates spline function interpolation whenever the function is
smooth.

• Spline interpolation may perform better than polynomial interpolation if the underlying function exhibits a high
degree of curvature or a derivative discontinuity.

Multidimensional interpolation

Univariate interpolation methods can be extended to higher dimensions by applying tensor product principles. We
consider the problem of interpolating a bivariate real-valued function 𝑓 over an interval:

𝐼 = {(𝑥, 𝑦)|𝑎𝑥 ≤ 𝑥 ≤ 𝑏𝑥, 𝑎𝑦 ≤ 𝑦 ≤ 𝑏𝑦}

Let 𝜑𝑥1 , 𝜑𝑥2 , ..., 𝜑𝑥𝑛 x and 𝑥1, 𝑥2, ..., 𝑥𝑛𝑥 be 𝑛𝑥 univariate basis functions and 𝑛𝑥 interpolation nodes for the interval
[𝑎𝑥, 𝑏𝑥] and let 𝜑𝑦1 , 𝜑𝑦2 , ..., 𝜑𝑦𝑛 x and 𝑦1, 𝑦2, ..., 𝑦𝑛𝑦 be 𝑛𝑥 univariate basis functions and 𝑛𝑦 interpolation nodes for
the interval [𝑎𝑦, 𝑏𝑦].

Then an 𝑛 = 𝑛𝑥𝑛𝑦 bivariate function basis defined on 𝐼 may be obtained by forming the tensor product of the univariate
basis functions: 𝜑𝑖𝑗(𝑥, 𝑦) = 𝜑𝑥

𝑖 (𝑥)𝜑𝑦
𝑗 (𝑦) for 𝑖 = 1, 2, ..., 𝑛𝑥 and 𝑗 = 1, 2, ..., 𝑛𝑦 . Similarly, a grid of 𝑛 = 𝑛𝑥𝑛𝑦

interpolation nodes for 𝐼 may be obtained by forming the Cartesian product of the univariate interpolation nodes

{(𝑥𝑖, 𝑦𝑗)|𝑖 = 1, 2, ..., 𝑛𝑥; 𝑗 = 1, 2, ..., 𝑛𝑦}.

Typically, multivariate tensor product interpolation schemes inherit the favorable qualities of their univariate parents.
An approximant for 𝑓 then takes the form:

𝑓(𝑥1, 𝑥2) =

𝑛𝑥∑︁
𝑖=1

𝑛𝑦∑︁
𝑗=1

𝑐𝑖𝑗𝜑𝑖𝑗(𝑥𝑖, 𝑦𝑗)

However, this straightforward extension to the multivariate setting suffers from the curse of dimensionality. For
example, the number of interpolation nodes increases exponentially in the number of dimensions.

As an aside, we now move to the multidimensional setting where we often have to apply the same operation across
multidimensional arrays and numpy provides some suitable capabilities to do this very fast if one makes an effort in
understanding its broadcasting rules.

[27]: plot_two_dimensional_grid("uniform")
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[28]: plot_two_dimensional_grid("chebychev")

Let’s see how we can transfer the ideas to polynomial interpolation to the two-dimensional setting.

𝑓(𝑥, 𝑦) =
cos(𝑥)

sin(𝑦)

[29]: ??plot_two_dimensional_problem

Signature: plot_two_dimensional_problem()
Source:
def plot_two_dimensional_problem():

"""Plot two-dimensional problem."""
x_fit = get_uniform_nodes(50)
y_fit = get_uniform_nodes(50)
X_fit, Y_fit = np.meshgrid(x_fit, y_fit)
Z_fit = problem_two_dimensions(X_fit, Y_fit)

fig = plt.figure()
ax = fig.gca(projection="3d")

(continues on next page)
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(continued from previous page)

ax.plot_surface(X_fit, Y_fit, Z_fit)
ax.set_ylabel("y")
ax.set_xlabel("x")
ax.set_zlabel("f(x, y)")

File: ~/external-storage/sciebo/office/OpenSourceEconomics/teaching/scientific-
→˓computing/course/labs/approximation/approximation_plots.py
Type: function

[30]: plot_two_dimensional_problem()

Now, let’s fit a two-dimensional polynomial approximation. We will have to rely on the scikit-learn library.

[31]: from sklearn.preprocessing import PolynomialFeatures # noqa: E402
from sklearn.linear_model import LinearRegression # noqa: E402
import sklearn # noqa: E402

We first need to set up an approximating model using some of its provided functionality. One of the functions at the
core of this workflow is np.meshgrid which takes a bit of getting used to. Let’s check out its documentation first and
so some explorations.

[32]: x_fit, y_fit = get_chebyshev_nodes(100), get_chebyshev_nodes(100)

We now combine the univariate interpolation nodes into a two-dimensional grid, adjust it to meet the structure expected
by scikit-learn, expand it to contain all polynomials (including interactions), and fit a linear regression model.

[33]: X_fit, Y_fit = np.meshgrid(x_fit, y_fit)
grid_fit = np.array(np.meshgrid(x_fit, y_fit)).T.reshape(-1, 2)
y = [problem_two_dimensions(*point) for point in grid_fit]

poly = PolynomialFeatures(degree=6)
X_poly = poly.fit_transform(grid_fit)
clf = LinearRegression().fit(X_poly, y)

How well are we doing? As usual, we will simply compare the true and approximated values of the function over a fine
grid.
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[34]: x_eval = get_uniform_nodes(100)
y_eval = get_uniform_nodes(100)

Z_eval = np.tile(np.nan, (100, 100))
Z_true = np.tile(np.nan, (100, 100))

for i, x in enumerate(x_eval):
for j, y in enumerate(y_eval):

point = [x, y]
Z_eval[i, j] = clf.predict(poly.fit_transform([point]))[0]
Z_true[i, j] = problem_two_dimensions(*point)

fig = plt.figure()
ax = fig.gca(projection="3d")
ax.plot_surface(*np.meshgrid(x_eval, y_eval), Z_eval - Z_true)

[34]: <mpl_toolkits.mplot3d.art3d.Poly3DCollection at 0x7fc295c55640>

Resources

• https://relate.cs.illinois.edu/course/cs450-f18/file-version/a7a1965adf0479d36f1a34889afe55e2ec61a532/
demos/upload/07-interpolation/Chebyshev%20interpolation.html

• https://www.unioviedo.es/compnum/labs/PYTHON/Interpolation.html

• https://www.johndcook.com/blog/2017/11/06/chebyshev-interpolation/

• https://numpy.org/devdocs/reference/routines.polynomials.html
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1.6.2 Functions

This module contains the algorithms for the approximation lab.

labs.approximation.approximation_algorithms.get_interpolator(name, degree, func)
Return interpolator.

labs.approximation.approximation_algorithms.get_interpolator_flexible_basis_flexible_nodes(func,
de-
gree,
ba-
sis='monomial',
nodes='uniform',
a=-

1,
b=1)

Return interpolator (flexible basis, flexible nodes).

labs.approximation.approximation_algorithms.get_interpolator_monomial_flexible_nodes(func,
de-
gree,
nodes='uniform',
a=-
1,
b=1)

Return monomial function (flexible nodes).

labs.approximation.approximation_algorithms.get_interpolator_monomial_uniform(func, degree,
a=- 1, b=1)

Return interpolator monomial function (uniform).

labs.approximation.approximation_algorithms.get_interpolator_runge_baseline(func)
Return interpolator runge function (baseline).
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TWO

PROJECTS

All information regarding your course project is collected in the OSE course projects documentation.
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CHAPTER

THREE

PARTNERS

Our course equips students with the required skills in statistics, technology, and communication to use data for decision-
making. Our partnerships with the private and public sector connect students directly with employment opportunities
that match their interests and skill set. All information regarding your partners is collected in the OSE course projects
documentation.
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CHAPTER

FOUR

ORGANIZATION

We start on October 12th, 2021, and meet on Tuesdays (2:00-3:30 PM) and Wednesdays (8:30-10:00 AM).

Lecturer: Philipp Eisenhauer

Teaching Assistants: Emily Schwab and Carolina Alvarez

We will conduct all course communications using the bonn-econ-teaching Zulip chat, so please be sure to join us there.
To join the Zulip organization, please click on the button below.

By default, you will already be subscribed to Q&A and tech support streams (=chatrooms). You need to subscribe
manually to the scientific computing course stream to receive all the messages for this course. There I also post the
link to the online lectures using ZOOM. Find out how to subscribe to a stream on Zulip here.

4.1 Lecture Plan

We first meet to discuss the Open Source Economics initiative, the basic ideas behind the course and introduce partic-
ipants to the basic tools used throughout.

Date Topic
12/10/2021 Course introduction, Tooling
13/10/2021 Tooling

We then acquire the basic numerical skills that are needed in any implementation of computational economic models.

Date Topic
19/10/2021 Linear equations
20/10/2021 Linear equations
25/10/2021 Deadline for registration with the examination office on BASIS
26/10/2021 Nonlinear equations
27/10/2021 Nonlinear equations
02/11/2021 Finite-dimensional optimization
03/11/2021 Finite-dimensional optimization
09/11/2021 Numerical integration and differentiation
10/11/2021 Numerical integration and differentiation
16/11/2021 German Reproducibility Day
17/11/2021 Guest lecture by Nuvolos and CI tutorial
23/11/2021 Function approximation
24/11/2021 Function approximation

99

https://peisenha.github.io
https://github.com/s6emschw
https://github.com/carolinalvarez
https://zulip.com
https://bonn-econ-teaching.zulipchat.com
https://zoom.us
https://zulipchat.com/help/browse-and-subscribe-to-streams
https://open-econ.org
https://reproducibilitynetwork.de/germanreproday/


OSE scientific computing

We are now ready to study a dynamic model of human capital accumulation where all elements of our numerical toolbox
are put together to study the mechanisms that determine individual investment decisions and to assess the impact of
alternative human capital policies.

Date Topic
30/11/2021 Eckstein-Keane-Wolpin models
01/12/2021 Dies Akademicus (no classes)
07/12/2021 Guest lecture by Ken Judd
08/12/2021 Keane & Wolpin (1997)
14/12/2021 Optimization using estimagic by Janos Gabler (OSE, University of Bonn)
15/12/2021 Research presentation: Uncertainty quantification
21/12/2021 Project clinic
22/12/2021 Project clinic

We then reconvene at the beginning of the new year to discuss some selected issues in more detail. We are fortunate
to host guest lectures from the Hasenauer Lab on Bayesian parameter estimation, the Fraunhofer Institute for Applied
Information Technology (FIT) who report on their use of microsimulation models in policy consulting, as well as the
data science teams from Deutsche Bank, CommaSoft, and the AXA Data Innovation Lab. The goal of these lectures is
to emphasize the transdisciplinary nature of research using computational models across domains and areas of expertise.

Date Topic
11/01/2022 Guest lecture by AXA Data Innovation Lab
12/01/2022 Guest lecture by Fraunhofer FIT
18/01/2022 Guest lecture by CommaSoft
19/01/2022 Guest lecture by Manuel Huth
21/01/2022 Project deadline
25/01/2022 Guest lecture by Deutsche Bank
26/01/2022 Demo-Day
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CHAPTER

SIX

TEXTBOOKS

We use the book Applied computational economics and finance by Mario Miranda and Paul Fackler throughout the
course. A special thanks to Randall Romero Aguilar who has also built a course around this book and maintains a
Python implementation of the CompEcon toolbox. Many of our code examples are building on his implementation
there. In addition, we will also consult Numerical methods in economics by Ken Judd for some of the more advanced
material.
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REVIEWS

• Athey, S., Imbens, G. (2019). Machine learning methods that economists should know about, Annual Review
of Economics, 11(1): 685-725.

• Judd, K.L. (1997). Computational economics and economic theory: Substitutes or complements?, Journal of
Economic Dynamics and Control, 21(6): 907-942.
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POWERED BY
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